Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Reducing A Class Of Two-Dimensional Integrals To One-Dimension With An Application To Gaussian Transforms, Jack C. Straton Sep 2020

Reducing A Class Of Two-Dimensional Integrals To One-Dimension With An Application To Gaussian Transforms, Jack C. Straton

Physics Faculty Publications and Presentations

Quantum theory is awash in multidimensional integrals that contain exponentials in the integration variables, their inverses, and inverse polynomials of those variables. The present paper introduces a means to reduce pairs of such integrals to one dimension when the integrand contains powers multiplied by an arbitrary function of xy/ (x + y) multiplying various combinations of exponentials. In some cases these exponentials arise directly from transition-amplitudes involving products of plane waves, hydrogenic wave functions, and Yukawa and/or Coulomb potentials. In other cases these exponentials arise from Gaussian transforms of such functions.


Improving The Understanding Of Jet Grooming In Perturbation Theory, Andrew J. Larkoski Jun 2020

Improving The Understanding Of Jet Grooming In Perturbation Theory, Andrew J. Larkoski

Portland Institute for Computational Science Publications

Jet grooming has emerged as a necessary and powerful tool in a precision jet physics program. In this paper, we present three results on jet grooming in perturbation theory, focusing on heavy jet mass in e+e → hadrons collisions, groomed with the modified mass drop tagger. First, we calculate the analytic cross section at leading-order. Second, using the leading-order result and numerical results through next-to-next-to-leading order, we show that cusps in the distribution on the interior of phase space at leading-order are softened at higher orders. Finally, using analytic and numerical results, we show that terms that …


Analytical Results For The Three-Body Radiative Attachment Rate Coefficient, With Application To The Positive Antihydrogen Ion H̄+, Jack C. Straton Apr 2020

Analytical Results For The Three-Body Radiative Attachment Rate Coefficient, With Application To The Positive Antihydrogen Ion H̄+, Jack C. Straton

Physics Faculty Publications and Presentations

To overcome the numerical difficulties inherent in the Maxwell–Boltzmann integral of the velocity-weighted cross section that gives the radiative attachment rate coefficient αRA for producing the negative hydrogen ion H or its antimatter equivalent, the positive antihydrogen ion H¯+ , we found the analytic form for this integral. This procedure is useful for temperatures below 700 K, the region for which the production of H¯+ has potential use as an intermediate stage in the cooling of antihydrogen to ultra-cold (sub-mK) temperatures for spectroscopic studies and probing the gravitational interaction of the anti-atom. Our results, utilizing a 50-term …


Groomed Jet Mass At High Precision, Adam Kardos, Andrew J. Larkoski, Zoltán Trócsányi Feb 2020

Groomed Jet Mass At High Precision, Adam Kardos, Andrew J. Larkoski, Zoltán Trócsányi

Portland Institute for Computational Science Publications

We present predictions of the distribution of groomed heavy jet mass in electron-positron collisions at the next-to-next-to-leading order accuracy matched with the resummation of large logarithms to next-to-next-to-next-to-leading logarithmic accuracy. Resummation at this accuracy is possible through extraction of necessary two-loop constants and three-loop anomalous dimensions from fixed-order codes.