Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Transport Signatures Of Dirac States In Topological Insulator - Ferromagnet Heterostructures, Hilary M. Hurst Nov 2019

Transport Signatures Of Dirac States In Topological Insulator - Ferromagnet Heterostructures, Hilary M. Hurst

Faculty Research, Scholarly, and Creative Activity

No abstract provided.


Lanczos-Boosted Numerical Linked-Cluster Expansion For Quantum Lattice Models, Krishnakumar Bhattaram, Ehsan Khatami Jul 2019

Lanczos-Boosted Numerical Linked-Cluster Expansion For Quantum Lattice Models, Krishnakumar Bhattaram, Ehsan Khatami

Faculty Research, Scholarly, and Creative Activity

Numerical linked-cluster expansions allow one to calculate finite-temperature properties of quantum lattice models directly in the thermodynamic limit through exact solutions of small clusters. However, full diagonalization is often the limiting factor for these calculations. Here we show that a partial diagonalization of the largest clusters in the expansion using the Lanczos algorithm can be as useful as full diagonalization for the method while mitigating some of the time and memory issues. As test cases, we consider the frustrated Heisenberg model on the checkerboard lattice and the Fermi-Hubbard model on the square lattice. We find that our approach can surpass …


Measurement-Induced Dynamics And Stabilization Of Spinor-Condensate Domain Walls, Hilary M. Hurst, I. B. Spielman May 2019

Measurement-Induced Dynamics And Stabilization Of Spinor-Condensate Domain Walls, Hilary M. Hurst, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

Weakly measuring many-body systems and allowing for feedback in real-time can simultaneously create and measure new phenomena in strongly correlated quantum systems. We study the dynamics of a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a domain wall, and focus on the trade-off between usable information obtained from measurement and quantum backaction. Each weakly measured system yields a measurement record from which we extract real-time dynamics of the domain wall. We show that quantum backaction due to measurement causes two primary effects: domain wall diffusion and overall heating. The system dynamics and signal-to-noise ratio depend on the choice of …


Induced Quantum Dot Probe For Material Characterization, Yun-Pil Shim, Rusko Ruskov, Hilary M. Hurst, Charles Tahan Apr 2019

Induced Quantum Dot Probe For Material Characterization, Yun-Pil Shim, Rusko Ruskov, Hilary M. Hurst, Charles Tahan

Faculty Research, Scholarly, and Creative Activity

We propose a non-destructive means of characterizing a semiconductor wafer via measuring parameters of an induced quantum dot on the material system of interest with a separate probe chip that can also house the measurement circuitry. We show that a single wire can create the dot, determine if an electron is present, and be used to measure critical device parameters. Adding more wires enables more complicated (potentially multi-dot) systems and measurements. As one application for this concept we consider silicon metal-oxide-semiconductor and silicon/silicon-germanium quantum dot qubits relevant to quantum computing and show how to measure low-lying excited states (so-called "valley" …