Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Harmonic Generation In Multiresonant Plasma Films, Maria Antonietta Vincenti, Domenico De Ceglia, Joseph W. Haus, Michael Scalora Oct 2013

Harmonic Generation In Multiresonant Plasma Films, Maria Antonietta Vincenti, Domenico De Ceglia, Joseph W. Haus, Michael Scalora

Electrical and Computer Engineering Faculty Publications

We investigate second- and third-harmonic generation in a slab of material that displays plasma resonances at the pump and its harmonic frequencies. Near-zero refractive indices and local field enhancement can deplete the pump for kW/cm2 incident powers, without resorting to other resonant photonic mechanisms. We show that low-threshold, highly efficient nonlinear processes are possible in the presence of losses and phase mismatch in structures that are 104 times shorter than typical nonlinear crystals, for relatively low irradiance values.


Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi Sep 2013

Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

A series of recent studies involving hybrid acousto-optic (AO) scattering in the Bragg domain under first-order feedback have shown the ability of the AO feedback system to encrypt, transmit and decrypt RF information applied via the sound driver. The basic premise of this operation is founded on the chaotic nature of the hybrid Bragg cell under feedback.


Numerical Examination Of Acousto-Optic Bragg Interactions For Profiled Lightwaves Using A Transfer Function Formalism, Monish Ranjan Chatterjee, Fares S. Almehmadi Aug 2013

Numerical Examination Of Acousto-Optic Bragg Interactions For Profiled Lightwaves Using A Transfer Function Formalism, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

Classically, acousto-optic (AO) interactions comprise scattering of photons by energetic phonons into higher and lower orders. Standard weak interaction theory describes diffraction in the Bragg regime as the propagation of a uniform plane wave of light through a uniform plane wave of sound, resulting in the well-known first- and zeroth-order diffraction.

Our preliminary investigation of the nature of wave diffraction and photon scattering from a Bragg cell under intensity feedback with profiled light beams indicates that the diffracted (upshifted photon) light continues to maintain the expected (uniform plane wave) behavior versus the optical phase shift in the cell within a …


Investigation Of Negative Index In Dispersive, Chiral Materials Via Contra-Propagating Velocities Under Second-Order Dispersion (Gvd), Monish Ranjan Chatterjee, Tarig A. Algadey Aug 2013

Investigation Of Negative Index In Dispersive, Chiral Materials Via Contra-Propagating Velocities Under Second-Order Dispersion (Gvd), Monish Ranjan Chatterjee, Tarig A. Algadey

Electrical and Computer Engineering Faculty Publications

Negative refractive index arises typically in metamaterials via multiple routes. One such avenue is the condition where the Poynting vector of the electromagnetic wave is in opposition to the group velocity in the material. An earlier work along this route in a chiral material led to the well-known result of requiring very large (non-realizable) chirality.

Thereafter, a combination of chirality together with first-order dispersion was examined using plane wave electromagnetic analysis. To arrive at the conclusions in that approach, the three wave velocities (energy, group and phase) were derived under first-order dispersion in permittivity, permeability and chirality. Negative index in …


Feedback Stabilization At Spear3, Daniel Kelley, Jeff Corbett Aug 2013

Feedback Stabilization At Spear3, Daniel Kelley, Jeff Corbett

STAR Program Research Presentations

The SPEAR3 synchrotron lightsource at SLAC relies on a sophisticated radio frequency (RF) timing system to maintain current – electrons – in the storage ring. One problem SPEAR3 operators have dealt with is the thermal expansion of one of the cables supporting this RF timing system. As the cable expands and contracts with the diurnal rise and fall of the sun, the phase of the RF in the cable shifts. This shifting phase affects the timing accuracy of electron injections into the storage ring.

A common feedback control algorithm PID (Proportional Integral Derivative) has countless applications in engineering. PID feedback …


Adaptive Wiener Filter Super-Resolution Of Color Filter Array Images, Barry K. Karch, Russell C. Hardie Aug 2013

Adaptive Wiener Filter Super-Resolution Of Color Filter Array Images, Barry K. Karch, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method …


Modeling A Sensor To Improve Its Efficacy, Nabin K. Malakar, Daniil Gladkov, Kevin H. Knuth May 2013

Modeling A Sensor To Improve Its Efficacy, Nabin K. Malakar, Daniil Gladkov, Kevin H. Knuth

Physics Faculty Scholarship

Robots rely on sensors to provide them with information about their surroundings. However, high-quality sensors can be extremely expensive and cost-prohibitive. Thus many robotic systems must make due with lower-quality sensors. Here we demonstrate via a case study how modeling a sensor can improve its efficacy when employed within a Bayesian inferential framework. As a test bed we employ a robotic arm that is designed to autonomously take its own measurements using an inexpensive LEGO light sensor to estimate the position and radius of a white circle on a black field. The light sensor integrates the light arriving from a …


Comparison Of Post-Detonation Combustion In Explosives Incorporating Aluminum Nanoparticles: Influence Of The Passivation Layer, William K. Lewis, C. G. Rumchik, M. J. Smith, K. A. Shiral Fernando, Christopher A. Crouse, Jonathan E. Spowart, Elena A. Guliants, Christopher E. Bunker Jan 2013

Comparison Of Post-Detonation Combustion In Explosives Incorporating Aluminum Nanoparticles: Influence Of The Passivation Layer, William K. Lewis, C. G. Rumchik, M. J. Smith, K. A. Shiral Fernando, Christopher A. Crouse, Jonathan E. Spowart, Elena A. Guliants, Christopher E. Bunker

Electrical and Computer Engineering Faculty Publications

Aluminum nanoparticles and explosive formulations that incorporate them have been a subject of ongoing interest due to the potential of aluminum particles to dramatically increase energy content relative to conventional organic explosives. We have used time-resolved atomic and molecular emission spectroscopy to monitor the combustion of aluminum nanoparticles within the overall chemical dynamicsof post-detonation fireballs. We have studied the energy release dynamics of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) charges incorporating three types of aluminum nanoparticles: commercial oxide-passivated nanoparticles, oleic acid-capped aluminum nanoparticles (AlOA), and nanoparticles in which the oxide shell of the particle has been functionalized with an acrylic monomer and copolymerized into …