Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Comparative Study Of Field Enhancement Between Isolated And Coupled Metal Nanoparticles: An Analytical Approach, Greg Sun, Jacob B. Khurgin Dec 2010

Comparative Study Of Field Enhancement Between Isolated And Coupled Metal Nanoparticles: An Analytical Approach, Greg Sun, Jacob B. Khurgin

Physics Faculty Publications

We present an analytical model that takes into account the coupling between the surface plasmon modes in complex metal nanostructures. We apply this model to evaluate the field enhancement in the gap of two coupled Au metal spheres embedded in GaN dielectric and compare the result with that obtained by the single sphere. The results show additional improvement can be obtained in the gap depending on the width of the gap. This approach offers a clear physical insight for the enhancement and a straightforward method for optimization.


Carrier Dynamics Of Terahertz Emission Based On Strained Sige/Si Single Quantum Well, K. M. Hung, J.-Y. Kuo, C. C. Hong, Greg Sun, R. A. Soref May 2010

Carrier Dynamics Of Terahertz Emission Based On Strained Sige/Si Single Quantum Well, K. M. Hung, J.-Y. Kuo, C. C. Hong, Greg Sun, R. A. Soref

Physics Faculty Publications

We report analysis of the carrier distribution during terahertz emission process with carrier–phonon interaction based on p-doped strained SiGe/Si single quantum-well. The results of this analysis show that a considerable number of carriers can penetrate the phonon wall to become “hot” carriers on an approximately picosecond timescale. These hot carriers relax after the removal of the applied voltage, generating a “second” emission in the measurement. This investigation provides an understanding of the carrier dynamics of terahertz emission and has an implication for the design of semiconductor terahertz emitters.


In Search Of The Elusive Lossless Metal, Jacob B. Khurgin, Greg Sun May 2010

In Search Of The Elusive Lossless Metal, Jacob B. Khurgin, Greg Sun

Physics Faculty Publications

We show that when one looks beyond the Drude model of metal conductivity, the metals that may be extremely lossy for low frequency electromagnetic waves can become perfectly lossless in the mid-IR region or higher, while retaining the essential metallic characteristic of negative permittivity even at those frequencies. We identify that the transition to the lossless regime occurs when the interatomic distances in the lattice exceed certain values, typically a factor of two larger than those occurring in nature. We believe that advances in nanoassembly may render lossless metals feasible with revolutionary implications for the fields of plasmonics and metamaterials.


Nonlinear Photoacoustics For Measuring The Nonlinear Optical Absorption Coefficient, Chandra S. Yelleswarapu, Sri-Rajasekhar Kothapalli Apr 2010

Nonlinear Photoacoustics For Measuring The Nonlinear Optical Absorption Coefficient, Chandra S. Yelleswarapu, Sri-Rajasekhar Kothapalli

Physics Faculty Publications

We report a novel photoacoustic Z-scan (PAZ-scan) technique that combines the advantages offered by the conventional Z-scan method and the sensitivity of the photoacoustic detection. The sample is scanned through the focused laser beam and the generated photoacoustic signal is recorded using a 10 MHz focused ultrasound transducer. Since the signal strength is directly proportional to the optical absorption, PAZ-scan displays nonlinear behavior depicting the nonlinear optical absorption of the material. Among many advantages, our experiments on mouse blood show that PAZ-scan can potentially be used as a standard technique to calibrate contrast agents used in theranostics in general and …


Radiation Emission From Wrinkled Sige/Sige Nanostructure, A. I. Fedorchenko, H. H. Cheng, Greg Sun, R. A. Soref Mar 2010

Radiation Emission From Wrinkled Sige/Sige Nanostructure, A. I. Fedorchenko, H. H. Cheng, Greg Sun, R. A. Soref

Physics Faculty Publications

Semiconductor optical emitters radiate light via band-to-band optical transitions. Here, a different mechanism of radiation emission, which is not related to the energy band of the materials, is proposed. In the case of carriers traveling along a sinusoidal trajectory through a wrinkled nanostructure, radiation was emitted via changes in their velocity in a manner analogous to synchrotron radiation. The radiated frequency of wrinkled SiGe/SiGe nanostructure was found to cover a wide spectrum with radiation power levels of the order of submilliwatts. Thus, this nanostructure can be used as a Si-based optical emitter and it will enable the integration of optoelectronic …