Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Testing A Thermodynamic Approach To Collective Animal Behavior In Laboratory Fish Schools, Julia A. Giannini, James G. Puckett Jun 2020

Testing A Thermodynamic Approach To Collective Animal Behavior In Laboratory Fish Schools, Julia A. Giannini, James G. Puckett

Physics and Astronomy Faculty Publications

Collective behaviors displayed by groups of social animals are observed frequently in nature. Understanding and predicting the behavior of complex biological systems is dependent on developing effective descriptions and models. While collective animal systems are characteristically nonequilibrium, we can employ concepts from equilibrium statistical mechanics to motivate the measurement of material-like properties in laboratory animal aggregates. Here, we present results from a new set of experiments that utilize high speed footage of two-dimensional schooling events, particle tracking, and projected static and dynamic light fields to observe and control the behavior of negatively phototaxic fish schools (Hemigrammus bleheri). First, …


Additive Modulation Of Dna-Dna Interactions By Interstitial Ions, Wei Meng, Raju Timsina, Abby Bull, Kurt Andresen, Xiangyun Qiu May 2020

Additive Modulation Of Dna-Dna Interactions By Interstitial Ions, Wei Meng, Raju Timsina, Abby Bull, Kurt Andresen, Xiangyun Qiu

Physics and Astronomy Faculty Publications

Quantitative understanding of biomolecular electrostatics, particularly involving multivalent ions and highly charged surfaces, remains lacking. Ion-modulated interactions between nucleic acids provide a model system in which electrostatics plays a dominant role. Using ordered DNA arrays neutralized by spherical cobalt3+ hexammine and Mg2+ ions, we investigate how the interstitial ions modulate DNA-DNA interactions. Using methods of ion counting, osmotic stress, and x-ray diffraction, we systematically determine thermodynamic quantities, including ion chemical potentials, ion partition, DNA osmotic pressure and force, and DNA-DNA spacing. Analyses of the multidimensional data provide quantitative insights into their interdependencies. The key finding of this study is that …