Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Hitting The Goalpost: Calculating The Fine Line Between Winning And Losing A Penalty Shootout, Ralf Widenhorn Oct 2016

Hitting The Goalpost: Calculating The Fine Line Between Winning And Losing A Penalty Shootout, Ralf Widenhorn

Physics Faculty Publications and Presentations

The Portland Timbers won their first Major League Soccer (MLS) Cup Championship in December 2015. However, if it had not been for a kind double goalpost miss during a penalty shootout a few weeks earlier, the Timbers would never have been in the finals. On Oct. 30th, after what has been called "the greatest penalty kick shootout in MLS history," featuring a combined 22 penalties that included penalties by both goalkeepers, the Timbers won their first-round playoff against Sporting Kansas City. During the thrilling shootout, which can be watched on the MLS website, Sporting had two potentially game-winning penalties miss …


Förster Resonance Energy Transfer Between Molecules In The Vicinity Of Graphene- Coated Nanoparticles, Tingting Bian, Railing Chang, Pui T. Leung Oct 2016

Förster Resonance Energy Transfer Between Molecules In The Vicinity Of Graphene- Coated Nanoparticles, Tingting Bian, Railing Chang, Pui T. Leung

Physics Faculty Publications and Presentations

The recent demonstration of the plasmonic enhanced Förster resonance energy transfer (FRET) between two molecules in the vicinity of planar graphene monolayers is further investigated using graphene-coated nanoparticles (GNP). Due to the flexibility of these nanostructures in terms of their geometric (size) and dielectric (e.g. core material) properties, greater tunability of the FRET enhancement can be achieved employing the localized surface plasmons. It is found that while the typical characteristic graphene plasmonic enhancements are manifested from using these GNP’s, even higher enhancements can be possible via doping and manipulating the core materials. In addition, the broadband characteristics is further expanded …


The Physics Of Juggling A Spinning Ping-Pong Ball., Ralf Widenhorn Oct 2016

The Physics Of Juggling A Spinning Ping-Pong Ball., Ralf Widenhorn

Physics Faculty Publications and Presentations

Juggling a spinning ball with a ping-pong paddle represents a challenge both in terms of hand-eye coordination and physics concepts. Here, we analyze the ping-pong ball’s motion, and explore how the correct paddle angle relates to the ball’s spin and speed, as it moves vertically up and down. For students, this requires engaging with concepts like momentum, angular momentum, free-body diagrams, and friction. The activities described in this article include high-speed video motion tracking of the ping-pong ball and the investigation of the frictional characteristics of the paddle. They can be done in a physics lab or at home, requiring …


Mechanisms Of Methane Transport Through Populus Trichocarpa, Ellynne Marie Kutschera, M. A. K. Khalil, Andrew Rice, Todd Rosenstiel Mar 2016

Mechanisms Of Methane Transport Through Populus Trichocarpa, Ellynne Marie Kutschera, M. A. K. Khalil, Andrew Rice, Todd Rosenstiel

Physics Faculty Publications and Presentations

Although the dynamics of methane (CH4) emission from croplands and wetlands have been fairly well investigated, the contribution of trees to global CH4 emission and the mechanisms of tree transport are relatively unknown. CH4 emissions from the common wetland tree species Populus trichocarpa (black cottonwood) native to the Pacific Northwest were measured under hydroponic conditions in order to separate plant transport mechanisms from the influence of soil processes. Roots were exposed to CH4 enriched water and canopy emissions of CH4 were measured. The average flux for 34 trials (at temperatures ranging from 17 to 25 °C) was 2.8 ± 2.2 …


Determination Of The Goos-Hänchen Shift In Dielectric Waveguides Via Photo Emission Electron Microscopy In The Visible Spectrum, Theodore Stedmark, Robert Campbell Word, Rolf Kӧnenkamp Feb 2016

Determination Of The Goos-Hänchen Shift In Dielectric Waveguides Via Photo Emission Electron Microscopy In The Visible Spectrum, Theodore Stedmark, Robert Campbell Word, Rolf Kӧnenkamp

Physics Faculty Publications and Presentations

Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410nm and 780nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. The electromagnetic field interaction at the boundaries …


Theoretical Estimates Of Spherical And Chromatic Aberration In Photoemission Electron Microscopy, Joseph P. S. Fitzgerald, Robert Campbell Word, Rolf Kӧnenkamp Jan 2016

Theoretical Estimates Of Spherical And Chromatic Aberration In Photoemission Electron Microscopy, Joseph P. S. Fitzgerald, Robert Campbell Word, Rolf Kӧnenkamp

Physics Faculty Publications and Presentations

We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured.


Atmospheric Methane Isotopic Record Favors Fossil Sources Flat In 1980s And 1990s With Recent Increase, Andrew L. Rice, Christopher Butenhoff, Doaa Galal Mohammed Teama, Florian H. Roger, M. A. K. Khalil, R. A. Rasmussen Jan 2016

Atmospheric Methane Isotopic Record Favors Fossil Sources Flat In 1980s And 1990s With Recent Increase, Andrew L. Rice, Christopher Butenhoff, Doaa Galal Mohammed Teama, Florian H. Roger, M. A. K. Khalil, R. A. Rasmussen

Physics Faculty Publications and Presentations

Observations of atmospheric methane (CH4) since the late 1970s and measurements of CH4 trapped in ice and snow reveal a meteoric rise in concentration during much of the twentieth century. Since 1750, levels of atmospheric CH4 have more than doubled to current globally averaged concentration near 1,800 ppb. During the late 1980s and 1990s, the CH4 growth rate slowed substantially and was near or at zero between 1999 and 2006. There is no scientific consensus on the drivers of this slowdown. Here, we report measurements of the stable isotopic composition of atmospheric CH4 (13C/12C and D/H) from a rare air …