Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physics Faculty Publications and Presentations

2012

Nanostructures

Articles 1 - 2 of 2

Full-Text Articles in Physics

Controlled Spatial Switching And Routing Of Surface Plasmons In Designed Single-Crystalline Gold Nanostructures, Rolf Kӧnenkamp, Robert Campbell Word, Joseph Fitzgerald, Athavan Nadarajah, S. D. Saliba Oct 2012

Controlled Spatial Switching And Routing Of Surface Plasmons In Designed Single-Crystalline Gold Nanostructures, Rolf Kӧnenkamp, Robert Campbell Word, Joseph Fitzgerald, Athavan Nadarajah, S. D. Saliba

Physics Faculty Publications and Presentations

Electron emission microscopy is used to visualize plasmonic routing in gold nano-structures. We show that in single-crystalline gold structures reliable routing can be achieved with polarization switching. The routing is due to the polarization dependence of the photon-to-plasmon coupling, which controls the mode distribution in the plasmonic gold film. We use specifically designed, single-crystalline planar structures. In these structures, the plasmon propagation length is sufficiently large such that significant plasmon power can be delivered to the near-field region around the end tips of the router. Solid state devices based on internal electron excitation and emission processes appear feasible.


Proton-Fountain Electric-Field-Assisted Nanolithography (Pen): Fabrication Of Polymer Nanostructures That Respond To Chemical And Electrical Stimuli. An Overview In The Context Of The Top-Down And Bottom-Up Approaches To Nanotechnology, Andres H. La Rosa, Mingdi Yan, Rodolfo Fernandez, Elia Zegarra Jan 2012

Proton-Fountain Electric-Field-Assisted Nanolithography (Pen): Fabrication Of Polymer Nanostructures That Respond To Chemical And Electrical Stimuli. An Overview In The Context Of The Top-Down And Bottom-Up Approaches To Nanotechnology, Andres H. La Rosa, Mingdi Yan, Rodolfo Fernandez, Elia Zegarra

Physics Faculty Publications and Presentations

The development of chemically functionalized materials, such that their physical properties can vary in response to external mechanical, chemical, or optical stimuli, offers potential applications in a wide range of fields, namely microfluidics, electronic memory devices, sensors and actuators. In particular, patterned structures built with stimuli-responsive polymer materials are attractive due to their inherent lower cost production and for building soft scaffolds that mimic closer natural bio-environments. In addition, harnessing the construction of patterns with nanoscale dimensions would not only a) allow building lab-on-a-chip devices that require minimal chemical reactants volumes, but also b) find applications in the area of …