Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physics Faculty Publications

2005

Structure functions

Discipline

Articles 1 - 2 of 2

Full-Text Articles in Physics

Higher Twist Analysis Of The Proton G₁ Structure Function, M. Osipenko, W. Melnitchouk, S. Simula, P. Bosted, V. Burkert, M. E. Christy, K. Griffioen, C. Keppel, S. E. Kuhn Jan 2005

Higher Twist Analysis Of The Proton G₁ Structure Function, M. Osipenko, W. Melnitchouk, S. Simula, P. Bosted, V. Burkert, M. E. Christy, K. Griffioen, C. Keppel, S. E. Kuhn

Physics Faculty Publications

We perform a global analysis of all available spin-dependent proton structure function data, covering a large range of Q2, 1 ⩽ Q2 ⩽ 30 GeV2, and calculate the lowest moment of the g1 structure function as a function of Q2. From the Q2 dependence of the lowest moment we extract matrix elements of twist-4 operators, and determine the color electric and magnetic polarizabilities of the proton to be XE= 0.026 ± 0.015(stat) ± 0.0210.024 (sys) and XB= -0.013 ∓ 0.007(stat) ∓ 0.010 0.012(sys), respectively.


Global Analysis Of Data On The Proton Structure Function G₁ And The Extraction Of Its Moments, M. Osipenko, S. Simula, W. Melnitchouk, P. Bosted, V. Burkert, E. Christy, K. Griffioen, C. Keppel, S. Kuhn, G. Ricco Jan 2005

Global Analysis Of Data On The Proton Structure Function G₁ And The Extraction Of Its Moments, M. Osipenko, S. Simula, W. Melnitchouk, P. Bosted, V. Burkert, E. Christy, K. Griffioen, C. Keppel, S. Kuhn, G. Ricco

Physics Faculty Publications

Inspired by recent measurements with the CLAS detector at Jefferson Lab, we perform a self-consistent analysis of world data on the proton structure function g1 in the range 0.17 < Q2 < 30 (GeV/c)2. We compute for the first time low-order moments of g, and study their evolution from small to large values of Q2. The analysis includes the latest data on both the unpolarized inclusive cross sections and the ratio R = σ LT from Jefferson Lab, as well as a new model for the transverse asymmetry A2 in the resonance region. The contributions of …