Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Chemistry Faculty Publications

Ab initio

Articles 1 - 2 of 2

Full-Text Articles in Physics

A Stimulated Emission Study Of The Ground State Bending Levels Of Bh2 Through The Barrier To Linearity And Ab Initio Calculations Of Near-Spectroscopic Accuracy, Bing Jin, Dennis J. Clouthier, Riccardo Tarroni Sep 2017

A Stimulated Emission Study Of The Ground State Bending Levels Of Bh2 Through The Barrier To Linearity And Ab Initio Calculations Of Near-Spectroscopic Accuracy, Bing Jin, Dennis J. Clouthier, Riccardo Tarroni

Chemistry Faculty Publications

The ground state bending levels of 11BH2 have been studied experimentally using a combination of low-resolution emission spectroscopy and high-resolution stimulated emission pumping (SEP) measurements. The data encompass the energy range below, through, and above the calculated position of the barrier to linearity. For the bending levels (0,3,0) and above, the data show substantial K-reordering, with the K"a = 1 levels falling well below those with K"a = 0. A comparison of the high-resolution rotationally resolved SEP data to our own very high level ab initio calculations of the rovibronic energy levels shows agreement approaching …


Pairwise And Many-Body Contributions To Interaction Potentials In He(N) Clusters, Carol A. Parish, Clifford E. Dykstra Jan 1993

Pairwise And Many-Body Contributions To Interaction Potentials In He(N) Clusters, Carol A. Parish, Clifford E. Dykstra

Chemistry Faculty Publications

High level ab initio calculations have been carried out to assess the pairwise additivity of potentials in the attractive or well regions of the potential surfaces of clusters of helium atoms. A large basis set was employed and calculations were done at the Brueckner orbital coupled cluster level. Differences between calculated potentials for several interacting atoms and the corresponding summed pair potentials reveal the three‐body and certain higher order contributions to the interaction strengths. Attraction between rare gas atoms develops from dispersion, and so helium clusters provide the most workable systems for analyzing nonadditivity of dispersion. The results indicate that …