Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

All HMC Faculty Publications and Research

Liquid films

Articles 1 - 3 of 3

Full-Text Articles in Physics

Stability Of Self-Similar Solutions For Van Der Waals Driven Thin Film Rupture, Thomas P. Witelski, Andrew J. Bernoff Sep 1999

Stability Of Self-Similar Solutions For Van Der Waals Driven Thin Film Rupture, Thomas P. Witelski, Andrew J. Bernoff

All HMC Faculty Publications and Research

Recent studies of pinch-off of filaments and rupture in thin films have found infinite sets of first-type similarity solutions. Of these, the dynamically stable similarity solutions produce observable rupture behavior as localized, finite-time singularities in the models of the flow. In this letter we describe a systematic technique for calculating such solutions and determining their linear stability. For the problem of axisymmetric van der Waals driven rupture (recently studied by Zhang and Lister), we identify the unique stable similarity solution for point rupture of a thin film and an alternative mode of singularity formation corresponding to annular “ring rupture.”


Light-Scattering Technique For The Study Of Dynamic Thickness Fluctuations In Thin Liquid Films, Richard C. Haskell, Daniel C. Petersen, Mark W. Johnson Jan 1993

Light-Scattering Technique For The Study Of Dynamic Thickness Fluctuations In Thin Liquid Films, Richard C. Haskell, Daniel C. Petersen, Mark W. Johnson

All HMC Faculty Publications and Research

The authors describe a light-scattering technique capable of probing the dynamics of thickness fluctuations in lipid bilayers. The technique, which they call reflectance fluctuation spectroscopy (RFS), is keenly sensitive to light scattered from the squeeze modes of motion in a thin liquid film, and insensitive to light scattered from the bend modes. A laser beam is focused to a small spot on the film, and the power in the specularly reflected beam is recorded in real time. Thickness fluctuations associated with the squeeze modes of motion give rise to fluctuations in the power of the specularly reflected light. The frequency ...


Light-Scattering Technique For The Study Of Dynamic Thickness Fluctuations In Thin Liquid Films, Richard C. Haskell, Daniel C. Petersen, Mark W. Johnson Jan 1993

Light-Scattering Technique For The Study Of Dynamic Thickness Fluctuations In Thin Liquid Films, Richard C. Haskell, Daniel C. Petersen, Mark W. Johnson

All HMC Faculty Publications and Research

The authors describe a light-scattering technique capable of probing the dynamics of thickness fluctuations in lipid bilayers. The technique, which they call reflectance fluctuation spectroscopy (RFS), is keenly sensitive to light scattered from the squeeze modes of motion in a thin liquid film, and insensitive to light scattered from the bend modes. A laser beam is focused to a small spot on the film, and the power in the specularly reflected beam is recorded in real time. Thickness fluctuations associated with the squeeze modes of motion give rise to fluctuations in the power of the specularly reflected light. The frequency ...