Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Taller In The Saddle: Constraining Cmb Physics Using Saddle Points, Jow L. Dylan, Dagoberto Contreras, Douglas Scott, Emory F. Bunn Mar 2019

Taller In The Saddle: Constraining Cmb Physics Using Saddle Points, Jow L. Dylan, Dagoberto Contreras, Douglas Scott, Emory F. Bunn

Physics Faculty Publications

The statistics of extremal points in the cosmic microwave background (CMB) temperature (hot and cold spots) have been well explored in the literature, and have been used to constrain models of the early Universe. Here, we extend the study of critical points in the CMB to the set that remains after removing extrema, namely the saddle points. We perform stacks of temperature and polarization about temperature saddle points in simulations of the CMB, as well as in data from the Plancksatellite. We then compute the theoretical profile of saddle-point stacks, given the underlying power spectra of the CMB. As an …


Maximum Likelihood Analysis Of Systematic Errors In Interferometric Observations Of The Cosmic Microwave Background, Le Zhang, Ata Karakci, Paul M. Sutter, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt Jun 2013

Maximum Likelihood Analysis Of Systematic Errors In Interferometric Observations Of The Cosmic Microwave Background, Le Zhang, Ata Karakci, Paul M. Sutter, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt

Physics Faculty Publications

We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilities and estimate power spectra using the statistically optimal maximum likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that does not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward manner. We find that, in order to accurately …