Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Technological University Dublin

Nanocomposites

2010

Articles 1 - 2 of 2

Full-Text Articles in Physics

Photopolymerizable Nanocomposites For Holographic Applications, Elsa Leite Jan 2010

Photopolymerizable Nanocomposites For Holographic Applications, Elsa Leite

Doctoral

Photopolymerizable nanocomposites with good optical properties consisting of an acrylamide based photopolymer and zeolite nanoparticles (Beta, zeolite A, AlPO-18, silicalite-1 and zeolite L) were fabricated and characterized for holographic applications. The colloidal zeolite solutions used in this project were characterized by several techniques including X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM) and Raman spectroscopy to ensure their successful synthesis. The dependence of grating performances in these nanocomposites on recording intensity, spatial frequency and zeolite concentration were studied. It was found that the incorporation of silicalite-1 nanoparticles or a small amount of zeolite A nanoparticles (up to …


Photopolymerizable Nanocomposites For Holographic Recording And Sensor Application, Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal Jan 2010

Photopolymerizable Nanocomposites For Holographic Recording And Sensor Application, Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal

Articles

Novel nanocomposites consisting of a water soluble acrylamide–based photopolymer and colloidal zeolite nanoparticles of zeolite Beta and zeolite A were prepared. The interactions between the photopolymer components and zeolite nanoparticles in the photopolymerizable nanocomposites were characterized for the first time by 13C NMR and Visible spectroscopy. It was found that the zeolite Beta nanoparticles (up to 5% wt.) behave as a non-inert additive, resulting in an effective increase in layer thickness that causes doubling of the diffraction efficiency of the nanocomposite in comparison to that of the undoped photopolymer. On the other hand, the nanocomposite containing zeolite A nanoparticles showed …