Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Kent State University

1991

Physics Publications

Interface

Articles 1 - 2 of 2

Full-Text Articles in Physics

Finite Molecular Anchoring In The Escaped-Radial Nematic Configuration: A 2-H-Nmr Study, G. P. Crawford, David W. Allender, J. William Doane, M. Vilfan, I. Vilfan Aug 1991

Finite Molecular Anchoring In The Escaped-Radial Nematic Configuration: A 2-H-Nmr Study, G. P. Crawford, David W. Allender, J. William Doane, M. Vilfan, I. Vilfan

Physics Publications

The director-field configuration of a nematic liquid crystal confined to cylindrical cavities of polycarbonate Nuclepore membranes ranging from 0.3 to 0.05-mu-m in radius is determined using deuterium nuclear magnetic resonance (H-2 NMR). Spectral patterns from cavities of radius 0.3-mu-m reveal the escaped-radial configuration with singular point defects, but as the cylinder size is decreased, the elastic energy imposed by the curvature of the confining walls competes with the anchoring energy to tilt the directors away from their preferred perpendicular anchoring direction, preventing the expected transition to the planar-radial configuration. A surface fitting parameter is directly determined by ...


Nematic-Isotropic Phase-Transition In A Liquid-Crystal Droplet, S. Kralj, S. Zumer, David W. Allender Mar 1991

Nematic-Isotropic Phase-Transition In A Liquid-Crystal Droplet, S. Kralj, S. Zumer, David W. Allender

Physics Publications

Possible phases in a nematic liquid crystal confined to a spherical submicrometer droplet embedded in a solid polymer are analyzed in terms of a Landau-de Gennes theory. For a droplet with a radial structure we show that the strength of the nematic-polymer interfacial interaction affects the nematic-paranematic (partially ordered isotropic phase) phase transition and may in addition induce a boundary-layer nematic phase. This boundary layer phase exists only in a narrow (approximately 0.1 K) temperature interval above the nematic phase for a restricted range of interfacial interactions. Also in the radial structure the degree of ordering is suppressed close ...