Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Measures Of Centrality Based On The Spectrum Of The Laplacian, Scott D. Pauls, Daniel Remondini Dec 2012

Measures Of Centrality Based On The Spectrum Of The Laplacian, Scott D. Pauls, Daniel Remondini

Dartmouth Scholarship

We introduce a family of new centralities, the k-spectral centralities. k-Spectral centrality is a measurement of importance with respect to the deformation of the graph Laplacian associated with the graph. Due to this connection, k-spectral centralities have various interpretations in terms of spectrally determined information.

We explore this centrality in the context of several examples. While for sparse unweighted net- works 1-spectral centrality behaves similarly to other standard centralities, for dense weighted net- works they show different properties. In summary, the k-spectral centralities provide a novel and useful measurement of relevance (for single network elements as well as whole subnetworks) …


Intrinsic Rotation Of Toroidally Confined Magnetohydrodynamics, Jorge A. Morales, Wouter J. T. T. Bos, Kai Schneider, David C. Montgomery Oct 2012

Intrinsic Rotation Of Toroidally Confined Magnetohydrodynamics, Jorge A. Morales, Wouter J. T. T. Bos, Kai Schneider, David C. Montgomery

Dartmouth Scholarship

The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum.


Automated Synthesis Of Dynamically Corrected Quantum Gates, Kaveh Khodjasteh, Hendrik Bluhm, Lorenza Viola Oct 2012

Automated Synthesis Of Dynamically Corrected Quantum Gates, Kaveh Khodjasteh, Hendrik Bluhm, Lorenza Viola

Dartmouth Scholarship

Dynamically corrected gates are extended to non-Markovian open quantum systems where limitations on the available controls and/or the presence of control noise make existing analytical approaches unfeasible. A computational framework for the synthesis of dynamically corrected gates is formalized that allows sensitivity against non-Markovian decoherence and control errors to be perturbatively minimized via numerical search, resulting in robust gate implementations. Explicit sequences for achieving universal high-fidelity control in a singlet-triplet spin qubit subject to realistic system and control constraint are provided, which simultaneously cancel to the leading order the dephasing due to non-Markovian nuclear-bath dynamics and voltage noise affecting the …


Electron Loss And Meteoric Dust In The Mesosphere, M. Friedrich, M. Rapp, T. Blix, U. P. Hoppe, K. Torkar, S. Robertson, S. Dickson, Kristina Lynch Oct 2012

Electron Loss And Meteoric Dust In The Mesosphere, M. Friedrich, M. Rapp, T. Blix, U. P. Hoppe, K. Torkar, S. Robertson, S. Dickson, Kristina Lynch

Dartmouth Scholarship

No abstract provided.


Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe Aug 2012

Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe

Dartmouth Scholarship

We use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase (η=−π/2) where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing …


Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos Aug 2012

Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos

Dartmouth Scholarship

We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially localized, long-lived structures known …


Deformed Lorentz Symmetry And Relative Locality In A Curved/Expanding Spacetime, Giovanni Amelino-Camelia, Antonino Marcianò, Marco Matassa, Giacomo Rosati Jun 2012

Deformed Lorentz Symmetry And Relative Locality In A Curved/Expanding Spacetime, Giovanni Amelino-Camelia, Antonino Marcianò, Marco Matassa, Giacomo Rosati

Dartmouth Scholarship

The interest of part of the quantum-gravity community in the possibility of Planck-scale-deformed Lorentz symmetry is also fueled by the opportunities for testing the relevant scenarios with analyses, from a signal-propagation perspective, of observations of bursts of particles from cosmological distances. In this respect the fact that so far the implications of deformed Lorentz symmetry have been investigated only for flat (Minkowskian) spacetimes represents a very significant limitation, since for propagation over cosmological distances the curvature/expansion of spacetime is evidently tangible. We here provide a significant step toward filling this gap by exhibiting an explicit example of Planck-scale-deformed relativistic symmetries …


More About Arc-Polarized Structures In The Solar Wind, S A. Haaland, B Sonnerup, G Paschmann May 2012

More About Arc-Polarized Structures In The Solar Wind, S A. Haaland, B Sonnerup, G Paschmann

Dartmouth Scholarship

We report results from a Cluster-based study of the properties of 28 arc-polarized magnetic structures (also called rotational discontinuities) in the solar wind. These Alfve ́nic events were selected from the database created and analyzed by Knetter (2005) by use of criteria chosen to elim- inate ambiguous cases. His studies showed that standard, four-spacecraft timing analysis in most cases lacks sufficient accuracy to identify the small normal magnetic field compo- nents expected to accompany such structures, leaving unan- swered the question of their existence. Our study aims to break this impasse. By careful application of minimum vari- ance analysis of …


Magnetic Field Amplification In Electron Phase-Space Holes And Related Effects, R. A. Treumann, W. Baumjohann Apr 2012

Magnetic Field Amplification In Electron Phase-Space Holes And Related Effects, R. A. Treumann, W. Baumjohann

Dartmouth Scholarship

No abstract provided.


Non-Equilibrium Landauer Transport Model For Hawking Radiation From A Black Hole, P. D. Nation, M. P. Blencowe, Franco Nori Mar 2012

Non-Equilibrium Landauer Transport Model For Hawking Radiation From A Black Hole, P. D. Nation, M. P. Blencowe, Franco Nori

Dartmouth Scholarship

We propose that the Hawking radiation energy and entropy flow rates from a black hole can be viewed as a one-dimensional (1D), non-equilibrium Landauer transport process. Support for this viewpoint comes from previous calculations invoking conformal symmetry in the near-horizon region, which give radiation rates that are identical to those of a single 1D quantum channel connected to a thermal reservoir at the Hawking temperature. The Landauer approach shows in a direct way the particle statistics independence of the energy and entropy fluxes of a black hole radiating into vacuum, as well as one near thermal equilibrium with its environment. …


Majorana Modes In Time-Reversal Invariant S -Wave Topological Superconductors, Shusa Deng, Lorenza Viola, Gerardo Ortiz Jan 2012

Majorana Modes In Time-Reversal Invariant S -Wave Topological Superconductors, Shusa Deng, Lorenza Viola, Gerardo Ortiz

Dartmouth Scholarship

We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes. The multiband character of the model together with spin-orbit coupling are key to realizing such a topological superconductor. We characterize the topological phase diagram by using a partial Chern number sum, and show that the latter is physically related to the parity of the fermion number of the time-reversal invariant modes. By taking the self-consistency constraint on the s-wave pairing gap into account, we also establish the possibility of a direct topological superconductor-to-topological insulator quantum phase transition.


Electron-Cylotron Maser Radiation From Electron Holes: Downward Current Region, R A. Treumann, W Baumjohann, R Pottelette Jan 2012

Electron-Cylotron Maser Radiation From Electron Holes: Downward Current Region, R A. Treumann, W Baumjohann, R Pottelette

Dartmouth Scholarship

The electron-cyclotron maser emission theory from electron holes is applied to holes generated in the down- ward current region of the aurora. It is argued that the main background auroral kilometric radiation source may still be located in the upward current region electron-ring (horseshoe) distribution while the fine structure is caused by electron holes predominantly in the downward current re- gion. There the existence of electron holes is well established and electron densities are high enough for substantial maser growth rates. Trapping of radiation by the holes provides strong amplification. Upward motion of holes favours the escape of radiation both, …


Colloquium : Stimulating Uncertainty: Amplifying The Quantum Vacuum With Superconducting Circuits, P. D. Nation, J. R. Johansson, M. P. Blencowe, Franco Nori Jan 2012

Colloquium : Stimulating Uncertainty: Amplifying The Quantum Vacuum With Superconducting Circuits, P. D. Nation, J. R. Johansson, M. P. Blencowe, Franco Nori

Dartmouth Scholarship

The ability to generate particles from the quantum vacuum is one of the most profound consequences of Heisenberg’s uncertainty principle. Although the significance of vacuum fluctuations can be seen throughout physics, the experimental realization of vacuum amplification effects has until now been limited to a few cases. Superconducting circuit devices, driven by the goal to achieve a viable quantum computer, have been used in the experimental demonstration of the dynamical Casimir effect, and may soon be able to realize the elusive verification of analog Hawking radiation. This Colloquium article describes several mechanisms for generating photons from the quantum vacuum and …