Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Physics

Conservation Laws And The Foundations Of Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich Jul 2023

Conservation Laws And The Foundations Of Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich

Mathematics, Physics, and Computer Science Faculty Articles and Research

In a recent paper, [Y. Aharonov, S. Popescu, D. Rohrlich, Proc. Natl. Acad. Sci. U.S.A.118 e1921529118 (2021)], it was argued that while the standard definition of conservation laws in quantum mechanics, which is of a statistical character, is perfectly valid, it misses essential features of nature and it can and must be revisited to address the issue of conservation/nonconservation in individual cases. Specifically, in the above paper, an experiment was presented in which it can be proven that in some individual cases, energy is not conserved, despite being conserved statistically. It was felt however that this is worrisome and …


Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer Apr 2023

Uncertainty From The Aharonov–Vaidman Identity, Matthew S. Leifer

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article, I show how the Aharonov–Vaidman identity A|ψ>=<A⟩|ψ>+ΔA| ψA> can be used to prove relations between the standard deviations of observables in quantum mechanics. In particular, I review how it leads to a more direct and less abstract proof of the Robertson uncertainty relation ΔAΔB≥12|< [A,B]>| than the textbook proof. I discuss the relationship between these two proofs and show how the Cauchy–Schwarz inequality can be derived from the Aharonov–Vaidman identity. I give Aharonov–Vaidman based proofs of the Maccone–Pati uncertainty relations …


Is There Causation In Fundamental Physics? New Insights From Process Matrices And Quantum Causal Modelling, Emily Adlam Apr 2023

Is There Causation In Fundamental Physics? New Insights From Process Matrices And Quantum Causal Modelling, Emily Adlam

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article we set out to understand the significance of the process matrix formalism and the quantum causal modelling programme for ongoing disputes about the role of causation in fundamental physics. We argue that the process matrix programme has correctly identified a notion of ‘causal order’ which plays an important role in fundamental physics, but this notion is weaker than the common-sense conception of causation because it does not involve asymmetry. We argue that causal order plays an important role in grounding more familiar causal phenomena. Then we apply these conclusions to the causal modelling programme within quantum foundations, …


Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni Dec 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The “Quantal Newtonian” Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen–Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a “probability amplitude.” A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper, we present a new perspective on such determinism. The ideas are based on the equations of motion or “Quantal Newtonian” Laws obeyed by each electron. These Laws, derived from …


What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre Jun 2022

What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre

All Physics Faculty Publications

This is a brief, informal, and relatively low-level course on the foundations of quantum field theory. The prerequisites are undergraduate courses in quantum mechanics and electromagnetism.


Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni Jan 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen-Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a ‘probability amplitude’. A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper we present a new perspective on such determinism. The ideas are based on the equations of motion or ‘Quantal Newtonian’ Laws obeyed by each electron. These Laws, derived from the …


Failed Attempt To Escape From The Quantum Pigeon Conundrum, Yakir Aharonov, Shrobona Bagchi, Justin Dressel, Gregory Reznik, Michael Ridley, Lev Vaidman Mar 2021

Failed Attempt To Escape From The Quantum Pigeon Conundrum, Yakir Aharonov, Shrobona Bagchi, Justin Dressel, Gregory Reznik, Michael Ridley, Lev Vaidman

Mathematics, Physics, and Computer Science Faculty Articles and Research

A recent criticism by Kunstatter et al. [Phys. Lett. A 384, 126686 (2020)] of a quantum setup violating the pigeon counting principle [Aharonov et al. PNAS 113, 532 (2016)] is refuted. The quantum nature of the violation of the pigeonhole principle with pre- and postselection is clarified.


Patrick Aidan Heelan’S The Observable: Heisenberg’S Philosophy Of Quantum Mechanics, Paul Downes Mar 2021

Patrick Aidan Heelan’S The Observable: Heisenberg’S Philosophy Of Quantum Mechanics, Paul Downes

Research Resources

The publication of Patrick Aidan Heelan’s The Observable, with forewords from Michel Bitbol, editor Babette Babich and the author himself, offers a timely invitation to reconsider the relation between quantum physics and continental philosophy.

Patrick Heelan does so, as a contemporary of and interlocutor with Werner Heisenberg on these issues, as a physicist himself who trained with leading figures of quantum mechanics (QM), Erwin Schrödinger and Eugene Wigner. Moreover, Heelan highlights Heisenberg’s interest in phenomenology as ‘a friend and frequent visitor of Martin Heidegger’ (55). Written originally in 1970 and unpublished then for reasons Babich explicates in her foreword, …


On Conservation Laws In Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich Jan 2021

On Conservation Laws In Quantum Mechanics, Yakir Aharonov, Sandu Popescu, Daniel Rohrlich

Mathematics, Physics, and Computer Science Faculty Articles and Research

Conservation laws are one of the most important aspects of nature. As such, they have been intensively studied and extensively applied, and are considered to be perfectly well established. We, however, raise fundamental question about the very meaning of conservation laws in quantum mechanics. We argue that, although the standard way in which conservation laws are defined in quantum mechanics is perfectly valid as far as it goes, it misses essential features of nature and has to be revisited and extended.


The Nature Of The Heisenberg-Von Neumann Cut: Enhanced Orthodox Interpretation Of Quantum Mechanics, Ashok Narasimhan, Deepak Chopra, Menas Kafatos Apr 2019

The Nature Of The Heisenberg-Von Neumann Cut: Enhanced Orthodox Interpretation Of Quantum Mechanics, Ashok Narasimhan, Deepak Chopra, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

We examine the issue of the Heisenberg-von Neumann cut in light of recent interpretations of quantum eraser experiments which indicate the possibility of a universal Observer outside space-time at an information level of existence. The delayed-choice aspects of observation, measurement, the role of the observer, and information in the quantum framework of the universe are discussed. While traditional double-slit experiments are usually interpreted as indicating that the collapse of the wave function involves choices by an individual observer in space-time, the extension to quantum eraser experiments brings in some additional subtle aspects relating to the role of observation and what …


Completely Top–Down Hierarchical Structure In Quantum Mechanics, Yakir Aharonov, Eliahu Cohen, Jeff Tollaksen Nov 2018

Completely Top–Down Hierarchical Structure In Quantum Mechanics, Yakir Aharonov, Eliahu Cohen, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

Can a large system be fully characterized using its subsystems via inductive reasoning? Is it possible to completely reduce the behavior of a complex system to the behavior of its simplest “atoms”? In this paper we answer these questions in the negative for a specific class of systems and measurements. After a general introduction of the topic, we present the main idea with a simple two-particle example, where strong correlations arise between two apparently empty boxes. This leads to surprising effects within atomic and electromagnetic systems. A general construction based on preand postselected ensembles is then suggested, wherein the Nbody …


The Participating Mind In The Quantum Universe, Menas Kafatos, Keun-Hang Susan Yang Jan 2018

The Participating Mind In The Quantum Universe, Menas Kafatos, Keun-Hang Susan Yang

Mathematics, Physics, and Computer Science Faculty Articles and Research

The Orthodox interpretation of quantum mechanics, which followed the Copenhagen Interpretation but was enhanced by primarily Werner Heisenberg and John von Neumann into a fully developed theory, brought in, among others, the role of measurement, available choices and response of the quantum system. It is, more consistent and clear than other interpretations of quantum mechanics as it provides account of the interactions of observers with the external world. As such, the Orthodox interpretation does a lot more than just account for physical interactions in the atomic world, which was the original goal of quantum mechanics in the early part of …


Sheaf Theoretic Formulation For Consciousness And Qualia And Relationship To The Idealism Of Non-Dual Philosophies, Menas Kafatos, Goro Kato Sep 2017

Sheaf Theoretic Formulation For Consciousness And Qualia And Relationship To The Idealism Of Non-Dual Philosophies, Menas Kafatos, Goro Kato

Mathematics, Physics, and Computer Science Faculty Articles and Research

Questions about the nature of reality, whether Consciousness is the fundamental reality in the universe, and what is Consciousness itself, have no answer in systems that assume an external reality independent of Consciousness. Ultimately, the ontological foundation of such systems is the absolute division of subject and object. We advocate instead what we consider to be an approach that is in agreement with the foundation of quantum reality, which is based on Rāmānuja’s version of Vedanta philosophy and non-dual Kashmir Śaivism. Quantum mechanics opened the door to consciousness, but it cannot account for consciousness. However, the quantum measurement problem implies …


Exomol Line List – Xxi. Nitric Oxide (No), Andy Wong, Sergei N. Yurchenko, Peter Bernath, Holger S.P. Müller, Stephanie Mcconkey, Jonathan Tennyson Jan 2017

Exomol Line List – Xxi. Nitric Oxide (No), Andy Wong, Sergei N. Yurchenko, Peter Bernath, Holger S.P. Müller, Stephanie Mcconkey, Jonathan Tennyson

Chemistry & Biochemistry Faculty Publications

Line lists for the X 2Pi electronic ground state for the parent isotopologue of nitric oxide (14N16O) and five other major isotopologues (14N17O, 14N18O, 15N16O, 15N17O and 15N18O) are presented. The line lists are constructed using empirical energy levels (and line positions) and high-level ab initio intensities. The energy levels were obtained using a combination of two approaches, from an effective Hamiltonian and from solving the rovibronic Schrödinger equation variationally. The effective Hamiltonian model was obtained through a fit …


Quantum Computers Are Coming And Will Be Able To Solve Complex Aviation And Aerospace Problems, Nihad E. Daidzic Jun 2016

Quantum Computers Are Coming And Will Be Able To Solve Complex Aviation And Aerospace Problems, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Naïve Physics And Quantum Mechanics: The Cognitive Bias Of Everett’S Many-Worlds Interpretation, Andrew Lang Feb 2016

Naïve Physics And Quantum Mechanics: The Cognitive Bias Of Everett’S Many-Worlds Interpretation, Andrew Lang

College of Science and Engineering Faculty Research and Scholarship

We discuss the role that intuitive theories of physics play in the interpretation of quantum mechanics. We compare and contrast naïve physics with quantum mechanics and argue that quantum mechanics is not just hard to understand but that it is difficult to believe, often appearing magical in nature. Quantum mechanics is often discussed in the context of "quantum weirdness" and quantum entanglement is known as "spooky action at a distance." This spookiness is more than just because quantum mechanics doesn't match everyday experience; it ruffles the feathers of our naïve physics cognitive module. In Everett's many-worlds interpretation of quantum mechanics, …


Preserving Entanglement During Weak Measurement Demonstrated With A Violation Of The Bell–Leggett–Garg Inequality, T. C. White, J. Y. Mutus, Justin Dressel, J. Kelly, R. Barends, E. Jeffrey, D. Sank, A. Megrant, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, John M. Martinis Feb 2016

Preserving Entanglement During Weak Measurement Demonstrated With A Violation Of The Bell–Leggett–Garg Inequality, T. C. White, J. Y. Mutus, Justin Dressel, J. Kelly, R. Barends, E. Jeffrey, D. Sank, A. Megrant, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, John M. Martinis

Mathematics, Physics, and Computer Science Faculty Articles and Research

Weak measurement has provided new insight into the nature of quantum measurement, by demonstrating the ability to extract average state information without fully projecting the system. For single-qubit measurements, this partial projection has been demonstrated with violations of the Leggett–Garg inequality. Here we investigate the effects of weak measurement on a maximally entangled Bell state through application of the Hybrid Bell–Leggett–Garg inequality (BLGI) on a linear chain of four transmon qubits. By correlating the results of weak ancilla measurements with subsequent projective readout, we achieve a violation of the BLGI with 27 s.d.s. of certainty.


Accommodating Retrocausality With Free Will, Yakir Aharonov, Eliahu Cohen, Tomer Shushi Jan 2016

Accommodating Retrocausality With Free Will, Yakir Aharonov, Eliahu Cohen, Tomer Shushi

Mathematics, Physics, and Computer Science Faculty Articles and Research

Retrocausal models of quantum mechanics add further weight to the conflict between causality and the possible existence of free will. We analyze a simple closed causal loop ensuing from the interaction between two systems with opposing thermodynamic time arrows, such that each system can forecast future events for the other. The loop is avoided by the fact that the choice to abort an event thus forecasted leads to the destruction of the forecaster's past. Physical law therefore enables prophecy of future events only as long as this prophecy is not revealed to a free agent who can otherwise render it …


Spin-Dependent Two-Color Kapitza-Dirac Effects, Scot Mcgregor, Wayne Cheng-Wei Huang, Herman Batelaan, Bradley Allan Shadwick Aug 2015

Spin-Dependent Two-Color Kapitza-Dirac Effects, Scot Mcgregor, Wayne Cheng-Wei Huang, Herman Batelaan, Bradley Allan Shadwick

Department of Physics and Astronomy: Faculty Publications

In this paper we present an analysis of the spin behavior of electrons propagating through a laser field. We present an experimentally realizable scenario in which spin-dependent effects of the interaction between the laser and the electrons are dominant. The laser interaction strength and incident electron velocity are in the nonrelativistic domain. This analysis may thus lead to novel methods of creating and characterizing spin-polarized nonrelativistic femtosecond electron pulses.


Discrete Excitation Spectrum Of A Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan Mar 2015

Discrete Excitation Spectrum Of A Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

We report that upon excitation by a single pulse, a classical harmonic oscillator immersed in the classical electromagnetic zero-point radiation exhibits a discrete harmonic spectrum in agreement with that of its quantum counterpart. This result is interesting in view of the fact that the vacuum field is needed in the classical calculation to obtain the agreement.


Differentiability Of Correlations In Realistic Quantum Mechanics, Alejandro Cabrera, Edson De Faria, Enrique Pujals, Charles Tresser Jan 2015

Differentiability Of Correlations In Realistic Quantum Mechanics, Alejandro Cabrera, Edson De Faria, Enrique Pujals, Charles Tresser

Publications and Research

We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed …


Weak Values Obtained In Matter-Wave Interferometry, Stephan Sponar, Tobias Denkmayr, Hermann Geppert, Hartmutt Lemmel, Alexandre Matzkin, Jeff Tollaksen, Yuji Hasegawa Jan 2015

Weak Values Obtained In Matter-Wave Interferometry, Stephan Sponar, Tobias Denkmayr, Hermann Geppert, Hartmutt Lemmel, Alexandre Matzkin, Jeff Tollaksen, Yuji Hasegawa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Weak values, introduced more than 25 years ago, underwent a metamorphosis from a theoretical curiosity to a powerful resource in photonics for exploring foundations of quantum mechanics, as well as a practical laboratory tool. Due to the tiny coherence volume of particles used in matter-wave optics, a straightforward implementation of weak measurements is not feasible. We have overcome this hurdle by developing a method to weakly measure a massive particle's spin component. A neutron optical approach is realized by utilizing neutron interferometry, where the neutron's spin is coupled weakly to its spatial degree of freedom. Here, we present how one …


Fundamental Mathematics Of Consciousness, Menas Kafatos Jan 2015

Fundamental Mathematics Of Consciousness, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

We explore a mathematical formalism that ties together the observer with the observed in the view that Consciousness is primary, operating through three principles which apply at all levels, the essence of qualia of experience. The formalism is a simplified version of Hilbert space mathematics encountered in quantum mechanics. It does, however, go beyond specific interpretations of quantum mechanics and has strong philosophical foundations in Western philosophy as well as monistic systems of the East. The implications are explored and steps for the full development of this axiomatic mathematical approach to Consciousness are discussed.


Weak Measurement And Bohmian Conditional Wave Functions, Travis Norsen Nov 2014

Weak Measurement And Bohmian Conditional Wave Functions, Travis Norsen

Physics: Faculty Publications

It was recently pointed out (and demonstrated experimentally) by Lundeen et al. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be "directly measured" using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a (perhaps entangled) multi-particle system, the result is precisely the so-called "conditional wave function" of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave …


Mapping The Optimal Route Between Two Quantum States, S. J. Weber, A. Chantasri, Justin Dressel, Andrew N. Jordan, K. W. Murch, I. Siddiqi Jul 2014

Mapping The Optimal Route Between Two Quantum States, S. J. Weber, A. Chantasri, Justin Dressel, Andrew N. Jordan, K. W. Murch, I. Siddiqi

Mathematics, Physics, and Computer Science Faculty Articles and Research

A central feature of quantum mechanics is that a measurement result is intrinsically probabilistic. Consequently, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. The ability to control a quantum system in the presence of these fluctuations is of increasing importance in quantum information processing and finds application in fields ranging from nuclear magnetic resonance1 to chemical synthesis2. A detailed understanding of this stochastic evolution is essential for the development of optimized control methods. Here we reconstruct the individual quantum trajectories3, 4, 5 of a superconducting circuit that evolves under the …


Quantum Non-Barking Dogs, Sara Imari Walker, Paul C. W. Davies, Prasant Samantray, Yakir Aharonov Jan 2014

Quantum Non-Barking Dogs, Sara Imari Walker, Paul C. W. Davies, Prasant Samantray, Yakir Aharonov

Mathematics, Physics, and Computer Science Faculty Articles and Research

Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the …


New Insights On Emergence From The Perspective Of Weak Values And Dynamical Non-Locality, Jeff Tollaksen Jan 2014

New Insights On Emergence From The Perspective Of Weak Values And Dynamical Non-Locality, Jeff Tollaksen

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this article, we will examine new fundamental aspects of "emergence" and "information" using novel approaches to quantum mechanics which originated from the group around Aharonov. The two-state vector formalism provides a complete description of pre- and post-selected quantum systems and has uncovered a host of new quantum phenomena which were previously hidden. The most important feature is that any weak coupling to a pre- and post-selected system is effectively a coupling to a "weak value" which is given by a simple expression depending on the two-state vector. In particular, weak values, are the outcomes of so called "weak measurements" …


Point–Counterpoint: Can Anything Be Learned From Surveys On The Interpretations Of Quantum Mechanics?, Matthew S. Leifer, Nathan Harshman Jan 2013

Point–Counterpoint: Can Anything Be Learned From Surveys On The Interpretations Of Quantum Mechanics?, Matthew S. Leifer, Nathan Harshman

Mathematics, Physics, and Computer Science Faculty Articles and Research

"In what follows, Matt Leifer and Nathan Harshman present opposing views on the value of surveys on foundational attitudes towards quantum mechanics. Three such surveys were recently published and their results are summarized in Table 1. Matt takes the `point,’ arguing that such surveys are not useful, while Nathan takes the `counterpoint.’ A complete set of references for both is given at the end."


Supersymmetric Quantum Mechanics And Solvable Models, Asim Gangopadhyaya, Jonathan Bougie, Jeffrey Mallow, C. Rasinariu Aug 2012

Supersymmetric Quantum Mechanics And Solvable Models, Asim Gangopadhyaya, Jonathan Bougie, Jeffrey Mallow, C. Rasinariu

Physics: Faculty Publications and Other Works

We review solvable models within the framework of supersymmetric quantum mechanics (SUSYQM). In SUSYQM, the shape invariance condition insures solvability of quantum mechanical problems. We review shape invariance and its connection to a consequent potential algebra. The additive shape invariance condition is specified by a difference-differential equation; we show that this equation is equivalent to an infinite set of partial differential equations. Solving these equations, we show that the known list of h-independent superpotentials is complete. We then describe how these equations could be extended to include superpotentials that do depend on h.


Visualizing Atomic Orbitals Using Second Life, Andrew Lang, David C. Kobilnyk Apr 2009

Visualizing Atomic Orbitals Using Second Life, Andrew Lang, David C. Kobilnyk

College of Science and Engineering Faculty Research and Scholarship

We demonstrate the usefulness of Second Life as a platform for enlivening major concepts in chemistry education. These concepts include absorption spectra, selection rules, quantum numbers, and atomic orbital shapes. We have built several exhibits in Second Life which provide 3-dimensional interactivity for each of those areas: an interactive experiment showing the absorption spectrum of hydrogen, an interactive model of selection rules showing allowed and forbidden transitions for each state, a 3-dimensional grid of orbitals showing the constraints on the values of quantum numbers, and a large-scale interactive orbital display allowing the user to choose and rotate to-scale atomic orbitals …