Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

2016

University of Kentucky

Dark ages

Articles 1 - 2 of 2

Full-Text Articles in Physics

The Baryon Cycle At High Redshifts: Effects Of Galactic Winds On Galaxy Evolution In Overdense And Average Regions, Raphael Sadoun, Isaac Shlosman, Jun-Hwan Choi, Emilio Romano-Díaz Sep 2016

The Baryon Cycle At High Redshifts: Effects Of Galactic Winds On Galaxy Evolution In Overdense And Average Regions, Raphael Sadoun, Isaac Shlosman, Jun-Hwan Choi, Emilio Romano-Díaz

Physics and Astronomy Faculty Publications

We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ~ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the "normal" region, …


Direct Collapse To Supermassive Black Hole Seeds: Comparing The Amr And Sph Approaches, Yang Luo, Kentaro Nagamine, Isaac Shlosman Mar 2016

Direct Collapse To Supermassive Black Hole Seeds: Comparing The Amr And Sph Approaches, Yang Luo, Kentaro Nagamine, Isaac Shlosman

Physics and Astronomy Faculty Publications

We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due …