Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak Sep 2022

Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak

Faculty Publications

Resonant plasmonic–molecular chiral interactions are a promising route to enhanced biosensing. However, biomolecular optical activity primarily exists in the far-ultraviolet regime, posing significant challenges for spectral overlap with current nano-optical platforms. We demonstrate experimentally and computationally the enhanced chiral sensing of a resonant plasmonic–biomolecular system operating in the far-UV. We develop a full-wave model of biomolecular films on Al gammadion arrays using experimentally derived chirality parameters. Our calculations show that detectable enhancements in the chiroptical signals from small amounts of biomolecules are possible only when tight spectral overlap exists between the plasmonic and biomolecular chiral responses. We support this conclusion …


Connecting Ansatz Expressibility To Gradient Magnitudes And Barren Plateaus, Zoe Holmes, Kunal Sharma, M Cerezo, Patrick Coles Jan 2022

Connecting Ansatz Expressibility To Gradient Magnitudes And Barren Plateaus, Zoe Holmes, Kunal Sharma, M Cerezo, Patrick Coles

Faculty Publications

Parametrized quantum circuits serve as ansatze for solving variational problems and provide a flexible paradigm for the programming of near-term quantum computers. Ideally, such ansatze should be highly expressive, so that a close approximation of the desired solution can be accessed. On the other hand, the ansatz must also have sufficiently large gradients to allow for training. Here, we derive a fundamental relationship between these two essential properties: expressibility and trainability. This is done by extending the well-established barren plateau phenomenon, which holds for ansatze that form exact 2-designs, to arbitrary ansatze. Specifically, we calculate the variance in the cost …


Towards A Quantum Notion Of Covariance In Spherically Symmetric Loop Quantum Gravity, Rodolfo Gambini, Javier Olmedo, Jorge Pullin Jan 2022

Towards A Quantum Notion Of Covariance In Spherically Symmetric Loop Quantum Gravity, Rodolfo Gambini, Javier Olmedo, Jorge Pullin

Faculty Publications

The covariance of loop quantum gravity studies of spherically symmetric space-times has recently been questioned. This is a reasonable worry, given that they are formulated in terms of slicing-dependent variables. We show explicitly that the resulting space-times, obtained from Dirac observables of the quantum theory, are covariant in the usual sense of the way-they preserve the quantum line element-for any gauge that is stationary (in the exterior, if there is a horizon). The construction depends crucially on the details of the Abelianized quantization considered, the satisfaction of the quantum constraints, and the recovery of standard general relativity in the classical …


Relating Dust Reference Models To Conventional Systems In Manifestly Gauge Invariant Perturbation Theory, Kristina Giesel, Bao-Fei Li, Parampreet Singh Jul 2021

Relating Dust Reference Models To Conventional Systems In Manifestly Gauge Invariant Perturbation Theory, Kristina Giesel, Bao-Fei Li, Parampreet Singh

Faculty Publications

Models with dust reference fields in relational formalism have proved useful in understanding the construction of gauge invariant perturbation theory to arbitrary orders in the canonical framework. These reference fields modify the dynamical equations for perturbation equations. However, important questions remain open on the relation with conventional perturbation theories of inflaton coupled to gravity and of multifluid systems, and on understanding modifications in terms of physical degrees of freedom. These gaps are filled in this manuscript for Brown-Kuchar and Gaussian dust models, both of which involve three scalar physical degrees of freedom. We establish a relationship of these models with …


Sphincs_Bssn: A General Relativistic Smooth Particle Hydrodynamics Code For Dynamical Spacetimes, S. Rosswog, P. Diener Jun 2021

Sphincs_Bssn: A General Relativistic Smooth Particle Hydrodynamics Code For Dynamical Spacetimes, S. Rosswog, P. Diener

Faculty Publications

We present a new methodology for simulating self-gravitating general-relativistic fluids. In our approach the fluid is modelled by means of Lagrangian particles in the framework of a general-relativistic (GR) smoothed particle hydrodynamics (SPH) formulation, while the spacetime is evolved on a mesh according to the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation that is also frequently used in Eulerian GR-hydrodynamics. To the best of our knowledge this is the first Lagrangian fully general relativistic hydrodynamics code (all previous SPH approaches used approximations to GR-gravity). A core ingredient of our particle-mesh approach is the coupling between the gas (represented by particles) and the spacetime (represented …


Updated Miniboone Neutrino Oscillation Results With Increased Data And New Background Studies, A. A. Aguilar-Arevalo, B. C. Brown, J. M. Conrad, R. Dharmapalan, A. Diaz, Z. Djurcic, D. A. Finley, R. Ford, G. T. Garvey, S. Gollapinni, A. Hourlier, E-C Huang, N. W. Kamp, G. Karagiorgi, T. Katori, T. Kobilarcik, K. Lin, W. C. Louis, C. Mariani, W. Marsh, G. B. Mills, J. Mirabal-Martinez, C. D. Moore, R. H. Nelson, J. Nowak, I Parmaksiz, Z. Pavlovic, H. Ray, B. P. Roe, A. D. Russell, A. Schneider, M. H. Shaevitz, H. Siegel, J. Spitz, I. Stancu, R. Tayloe, R. T. Thornton, M. Tzanov, R. G. Van De Water, D. H. White, E. D. Zimmerman Mar 2021

Updated Miniboone Neutrino Oscillation Results With Increased Data And New Background Studies, A. A. Aguilar-Arevalo, B. C. Brown, J. M. Conrad, R. Dharmapalan, A. Diaz, Z. Djurcic, D. A. Finley, R. Ford, G. T. Garvey, S. Gollapinni, A. Hourlier, E-C Huang, N. W. Kamp, G. Karagiorgi, T. Katori, T. Kobilarcik, K. Lin, W. C. Louis, C. Mariani, W. Marsh, G. B. Mills, J. Mirabal-Martinez, C. D. Moore, R. H. Nelson, J. Nowak, I Parmaksiz, Z. Pavlovic, H. Ray, B. P. Roe, A. D. Russell, A. Schneider, M. H. Shaevitz, H. Siegel, J. Spitz, I. Stancu, R. Tayloe, R. T. Thornton, M. Tzanov, R. G. Van De Water, D. H. White, E. D. Zimmerman

Faculty Publications

The MiniBooNE experiment at Fermilab reports a total excess of 638.0 +/- 52.1(stat) +/- 122.2(syst) electronlike events from a data sample corresponding to 18.75 x 10(20) protons-on-target in neutrino mode, which is a 46% increase in the data sample with respect to previously published results and 11.27 x 10(20) protons-on-target in antineutrino mode. The overall significance of the excess, 4.8 sigma, is limited by systematic uncertainties, assumed to be Gaussian, as the statistical significance of the excess is 12.2 sigma. The additional statistics allow several studies to address questions on the source of the excess. First, we provide two-dimensional plots …


Quasinormal Modes And Their Overtones At The Common Horizon In A Binary Black Hole Merger, Pierre Mourier, Xisco Jimenez Forteza, Daniel Pook-Kolb, Dadri Krishnan, Erik Schnetter Feb 2021

Quasinormal Modes And Their Overtones At The Common Horizon In A Binary Black Hole Merger, Pierre Mourier, Xisco Jimenez Forteza, Daniel Pook-Kolb, Dadri Krishnan, Erik Schnetter

Faculty Publications

It is expected that all astrophysical black holes in equilibrium are well described by the Kerr solution. Moreover, any black hole far away from equilibrium, such as one initially formed in a compact binary merger or by the collapse of a massive star, will eventually reach a final equilibrium Kerr state. At sufficiently late times in this process of reaching equilibrium, we expect that the black hole is modeled as a perturbation around the final state. The emitted gravitational waves will then be damped sinusoids with frequencies and damping times given by the quasinormal mode spectrum of the final Kerr …


A Coded Aperture Microscope For X-Ray Fluorescence Full-Field Imaging, D. P. Siddons, A. J. Kuczewski, A. K. Rumaiz, R. Tappero, M Idir, K. Nakhoda, J. Khanfri, V. Singh, E. R. Farquhar, M. Sullivan, D. Abel, D. J. Brady, X. Yuan Nov 2020

A Coded Aperture Microscope For X-Ray Fluorescence Full-Field Imaging, D. P. Siddons, A. J. Kuczewski, A. K. Rumaiz, R. Tappero, M Idir, K. Nakhoda, J. Khanfri, V. Singh, E. R. Farquhar, M. Sullivan, D. Abel, D. J. Brady, X. Yuan

Faculty Publications

The design and construction of an instrument for full-field imaging of the X-ray fluorescence emitted by a fully illuminated sample are presented. The aim is to produce an X-ray microscope with a few micrometers spatial resolution, which does not need to scan the sample. Since the fluorescence from a spatially inhomogeneous sample may contain many fluorescence lines, the optic which will provide the magnification of the emissions must be achromatic, i.e. its optical properties must be energy-independent. The only optics which fulfill this requirement in the X-ray regime are mirrors and pinholes. The throughput of a simple pinhole is very …


Demonstration Of Dynamic Thermal Compensation For Parametric Instability Suppression In Advanced Ligo, T. Hardwick, V. J. Hamedan, C. Blair, A. C. Green, D. Vander-Hyde Oct 2020

Demonstration Of Dynamic Thermal Compensation For Parametric Instability Suppression In Advanced Ligo, T. Hardwick, V. J. Hamedan, C. Blair, A. C. Green, D. Vander-Hyde

Faculty Publications

Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an …


Quantum Backaction Cancellation In The Audio Band, Jonathan Cripe, Torrey Cullen, Yanbei Chen, Paula Heu, David Follman, Garrett D. Cole, Thomas Corbitt Sep 2020

Quantum Backaction Cancellation In The Audio Band, Jonathan Cripe, Torrey Cullen, Yanbei Chen, Paula Heu, David Follman, Garrett D. Cole, Thomas Corbitt

Faculty Publications

We report on the cancellation of quantum backaction noise in an optomechanical cavity. We perform measurements of the displacement of the microresonator, one in reflection of the cavity and one in transmission of the cavity. We show that measuring the amplitude quadrature of the light transmitted by the optomechanical cavity allows us to cancel the backaction noise between 2 and 50 kHz as a consequence of the strong optical spring present in the detuned cavity. This cancellation yields a more sensitive measurement of the microresonator's position with a 2 dB increase in sensitivity. To confirm that the backaction is eliminated, …


Modifications To Gravitational Wave Equation From Canonical Quantum Gravity, Andrea Dapor, Klaus Liegener Aug 2020

Modifications To Gravitational Wave Equation From Canonical Quantum Gravity, Andrea Dapor, Klaus Liegener

Faculty Publications

It is expected that the quantum nature of spacetime leaves its imprint in all semiclassical gravitational systems, at least in certain regimes, including gravitational waves. In this paper we investigate such imprints on gravitational waves within a specific framework: space is assumed to be discrete (in the form of a regular cubic lattice), and this discrete geometry is quantised following Dirac's canonical quantisation scheme. The semiclassical behavior is then extracted by promoting the expectation value of the Hamiltonian operator on a semiclassical state to an effective Hamiltonian. Considering a family of semiclassical states representing small tensor perturbations to Minkowski background, …


Noise Resilience Of Variational Quantum Compiling, Kunal Sharma, Sumeet Khatri2, M. Cerezo, Patrick J. Coles Apr 2020

Noise Resilience Of Variational Quantum Compiling, Kunal Sharma, Sumeet Khatri2, M. Cerezo, Patrick J. Coles

Faculty Publications

Variational hybrid quantum-classical algorithms (VHQCAs) are near-term algorithms that leverage classical optimization to minimize a cost function, which is efficiently evaluated on a quantum computer. Recently VHQCAs have been proposed for quantum compiling, where a target unitary U is compiled into a short-depth gate sequence V. In this work, we report on a surprising form of noise resilience for these algorithms. Namely, we find one often learns the correct gate sequence V (i.e. the correct variational parameters) despite various sources of incoherent noise acting during the cost-evaluation circuit. Our main results are rigorous theorems stating that the optimal variational parameters …


Expectation Values Of Coherent States For Su(2) Lattice Gauge Theories, Klaus Liegener, Ernst-Albrecht Zwicknagel Feb 2020

Expectation Values Of Coherent States For Su(2) Lattice Gauge Theories, Klaus Liegener, Ernst-Albrecht Zwicknagel

Faculty Publications

This article investigates properties of semiclassical Gauge Field Theory Coherent States for general quantum gauge theories. Useful, e.g., for the canonical formulation of Lattice Gauge Theories these states are labelled by a point in the classical phase space and constructed such that the expectation values of the canonical operators are sharply peaked on said phase space point. For the case of the non-abelian gauge group SU(2), we will explicitly compute the expectation value of general polynomials including the first order quantum corrections. This allows asking more precise questions about the quantum fluctuations of any given semiclassical system.


High-Harmonic Spectroscopy Of Transient Two-Center Interference Calculated With Time-Dependent Density-Functional Theory, Francois Mauger, Paul M. Abanador, Kenneth Lopata, Kenneth J. Schafer Jul 2019

High-Harmonic Spectroscopy Of Transient Two-Center Interference Calculated With Time-Dependent Density-Functional Theory, Francois Mauger, Paul M. Abanador, Kenneth Lopata, Kenneth J. Schafer

Faculty Publications

We demonstrate high-harmonic spectroscopy in many-electron molecules using time-dependent density-functional theory. We show that a weak attosecond-pulse-train ionization seed that is properly synchronized with the strong driving mid-infrared laser field can produce experimentally relevant high-harmonic generation (HHG) signals, from which we extract both the spectral amplitude and the target-specific phase (group delay). We also show that further processing of the HHG signal can be used to achieve molecular-frame resolution, i.e., to resolve the contributions from rescattering on different sides of an oriented molecule. In this framework, we investigate transient two-center interference in CO2 and OCS, and how subcycle polarization effects …


Characteristic Length Scales Of The Secondary Relaxations In Glass-Forming Glycerol, Sudipta Gupta, Eugene Mamontov, Niina Jalarvo, Laura Stingaciu, Michael Ohl Mar 2016

Characteristic Length Scales Of The Secondary Relaxations In Glass-Forming Glycerol, Sudipta Gupta, Eugene Mamontov, Niina Jalarvo, Laura Stingaciu, Michael Ohl

Faculty Publications

We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends …


Review Of Tuxedo Park, Michael F. Russo May 2002

Review Of Tuxedo Park, Michael F. Russo

Faculty Publications

No abstract provided.