Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Faculty Publications

Atomic, Molecular and Optical Physics

Semiconductor growth

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Cu2+ And Cu3+ Acceptors In Β-Ga2O3 Crystals: A Magnetic Resonance And Optical Absorption Study, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, Christopher A. Lenyk, J. Jesenovec, J. S. Mccloy, M. D. Mccluskey, Larry E. Halliburton Feb 2022

Cu2+ And Cu3+ Acceptors In Β-Ga2O3 Crystals: A Magnetic Resonance And Optical Absorption Study, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, Christopher A. Lenyk, J. Jesenovec, J. S. Mccloy, M. D. Mccluskey, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) and optical absorption are used to characterize Cu2+ (3d9) and Cu3+ (3d8) ions in Cu-doped β-Ga2O3. These Cu ions are singly ionized acceptors and neutral acceptors, respectively (in semiconductor notation, they are Cu and Cu0 acceptors). Two distinct Cu2+ EPR spectra are observed in the as-grown crystals. We refer to them as Cu2+(A) and Cu2+(B). Spin-Hamiltonian parameters (a g matrix and a 63,65Cu hyperfine matrix) are obtained from the angular dependence of each spectrum. Additional electron-nuclear double resonance …


Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles Apr 2020

Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to experimentally determine the (0/−) level of the Mg acceptor in an Mg-doped β-Ga2O3 crystal. Our results place this level 0.65 eV (±0.05 eV) above the valence band, a position closer to the valence band than the predictions of several recent computational studies. The crystal used in this investigation was grown by the Czochralski method and contains large concentrations of Mg acceptors and Ir donors, as well as a small concentration of Fe ions and an even smaller concentration of Cr ions. Below room temperature, illumination with 325 nm laser light …