Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Sn Vacancies In Photorefractive Sn2P2S6 Crystals: An Electron Paramagnetic Resonance Study Of An Optically Active Hole Trap, Eric M. Golden, Sergey A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoika, Nancy C. Giles, Larry E. Halliburton Oct 2016

Sn Vacancies In Photorefractive Sn2P2S6 Crystals: An Electron Paramagnetic Resonance Study Of An Optically Active Hole Trap, Eric M. Golden, Sergey A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoika, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to identify the singly ionized charge state of the Sn vacancy (VSn) in single crystals of Sn2P2S6 (often referred to as SPS). These vacancies, acting as a hole trap, are expected to be important participants in the photorefractive effect observed in undoped SPS crystals. In as-grown crystals, the Sn vacancies are doubly ionized (V2−Sn) with no unpaired spins. They are then converted to a stable EPR-active state when an electron is removed (i.e., a hole is trapped) during an illumination below 100 K …


Investigation Of 186Re Via Radiative Thermal-Neutron Capture On 185Re, David A. Matters, Andrew G. Lerch, A. M. Hurst, L. Szentmiklosi, J. J. Carroll, B. Detwiler, Zs. Revay, John W. Mcclory, Stephen R. Mchale, R. B. Firestone, B. W. Sleaford, M. Krticka, T. Belgya May 2016

Investigation Of 186Re Via Radiative Thermal-Neutron Capture On 185Re, David A. Matters, Andrew G. Lerch, A. M. Hurst, L. Szentmiklosi, J. J. Carroll, B. Detwiler, Zs. Revay, John W. Mcclory, Stephen R. Mchale, R. B. Firestone, B. W. Sleaford, M. Krticka, T. Belgya

Faculty Publications

Partial 𝛾-ray production cross sections and the total radiative thermal-neutron capture cross section for the 185Re(n,𝛾)186Re reaction were measured using the Prompt Gamma Activation Analysis facility at the Budapest Research Reactor with an enriched 185Re target. The 186Re cross sections were standardized using well-known 35Cl(n,𝛾)36Cl cross sections from irradiation of a stoichiometric natReCl3 target. The resulting cross sections for transitions feeding the 186Re ground state from low-lying levels below a cutoff energy of Ec=746keV were combined with a modeled probability of ground-state feeding from levels above E …


Identification Of The Zinc-Oxygen Divacancy In Zno Crystals, Maurio S. Holston, Eric M. Golden, Brant E. Kananen, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton Apr 2016

Identification Of The Zinc-Oxygen Divacancy In Zno Crystals, Maurio S. Holston, Eric M. Golden, Brant E. Kananen, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

An electron paramagnetic resonance (EPR) spectrum in neutron-irradiated ZnO crystals is assigned to the zinc-oxygen divacancy. These divacancies are observed in the bulk of both hydrothermally grown and seeded-chemical-vapor-transport-grown crystals after irradiations with fast neutrons. Neutral nonparamagnetic complexes consisting of adjacent zinc and oxygen vacancies are formed during the irradiation. Subsequent illumination below ∼150 K with 442 nm laser light converts these (V2−Zn − V2+O)0 defects to their EPR-active state (VZn − V2+O)+ as electrons are transferred to donors. The resulting photoinduced S = 1/2 spectrum of the …


The Closo-Si12C12 Molecule From Cluster To Crystal: A Theoretical Prediction, Xiaofeng F. Duan, Larry W. Burggraf Mar 2016

The Closo-Si12C12 Molecule From Cluster To Crystal: A Theoretical Prediction, Xiaofeng F. Duan, Larry W. Burggraf

Faculty Publications

The structure of closo-Si12C12 is unique among stable SinCm isomers (n, m > 4) because of its high symmetry, π–π stacking of C6 rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si12C12 molecules through Si–Si bonds at unsaturated Si atoms. As a result the closo-Si12C12 molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer …