Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Astrophysics and Astronomy

Brigham Young University

Phase

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Stable Ordered Structures Of Binary Technetium Alloys From First Principles, Gus L. W. Hart, Ohad Levy, Junkai Xue, Shidong Wang, Stefano Curtarolo Jan 2012

Stable Ordered Structures Of Binary Technetium Alloys From First Principles, Gus L. W. Hart, Ohad Levy, Junkai Xue, Shidong Wang, Stefano Curtarolo

Faculty Publications

Technetium, element 43, is the only radioactive transition metal. It occurs naturally on earth in only trace amounts. Experimental investigation of its possible compounds is thus inherently difficult and limited. Half of the Tc-transition-metal systems (14 out of 28) are reported to be phase separating or lack experimental data. Using high-throughput first-principles calculations, we present a comprehensive investigation of the binary alloys of technetium with the transition metals. The calculations predict stable, ordered structures in nine of these 14 binary systems. They also predict additional compounds in all nine known compound-forming systems and in two of the five systems reported …


Ordered Phases In Ruthenium Binary Alloys From High-Throughput First-Principles Calculations, Gus L. W. Hart, Lance J. Nelson, Michal Jahnátek, Ohad Levy, Roman V. Chepulskii, J. Xue, Stephano Curtarolo Dec 2011

Ordered Phases In Ruthenium Binary Alloys From High-Throughput First-Principles Calculations, Gus L. W. Hart, Lance J. Nelson, Michal Jahnátek, Ohad Levy, Roman V. Chepulskii, J. Xue, Stephano Curtarolo

Faculty Publications

Despite the increasing importance of ruthenium in numerous technological applications, e.g., catalysis and electronic devices, experimental and computational data on its binary alloys are sparse. In particular, data are scant on those binary systems believed to be phase-separating. We performed a comprehensive study of ruthenium binary systems with the 28 transition metals, using high-throughput first-principles calculations. These computations predict novel unsuspected compounds in 7 of the 16 binary systems previously believed to be phase-separating and in two of the three systems reported with only a high-temperature σ phase. They also predict a few unreported compounds in five additional systems and …


Ordered Magnesium-Lithium Alloys: First-Principles Predictions, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo Jan 2010

Ordered Magnesium-Lithium Alloys: First-Principles Predictions, Richard H. Taylor, Gus L. W. Hart, Stefano Curtarolo

Faculty Publications

Magnesium-lithium (Mg-Li) alloys are among the lightest structural materials. Although considerable work has been done on the Mg-Li system, little is known regarding potential ordered phases. A first and rapid analysis of the system with the high-throughput method reveals an unexpected wealth of potentially stable low-temperature phases. Subsequent cluster expansions constructed for bcc and hcp superstructures extend the analysis and verify our high-throughput results. Of particular interest are those structures with greater than 13 at. % lithium, as they exhibit either partial or complete formation as a cubic structure. Order-disorder transition temperatures are predicted by Monte Carlo simulations to be …