Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Statistics and Probability

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 40

Full-Text Articles in Physics

Anomaly Detection On Small Wind Turbine Blades Using Deep Learning Algorithms, Bridger Altice, Edwin Nazario, Mason Davis, Mohammad Shekaramiz, Todd K. Moon, Mohammad A. S. Masoum Feb 2024

Anomaly Detection On Small Wind Turbine Blades Using Deep Learning Algorithms, Bridger Altice, Edwin Nazario, Mason Davis, Mohammad Shekaramiz, Todd K. Moon, Mohammad A. S. Masoum

Electrical and Computer Engineering Faculty Publications

Wind turbine blade maintenance is expensive, dangerous, time-consuming, and prone to misdiagnosis. A potential solution to aid preventative maintenance is using deep learning and drones for inspection and early fault detection. In this research, five base deep learning architectures are investigated for anomaly detection on wind turbine blades, including Xception, Resnet-50, AlexNet, and VGG-19, along with a custom convolutional neural network. For further analysis, transfer learning approaches were also proposed and developed, utilizing these architectures as the feature extraction layers. In order to investigate model performance, a new dataset containing 6000 RGB images was created, making use of indoor and …


Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao May 2022

Statistical Characteristics Of High-Frequency Gravity Waves Observed By An Airglow Imager At Andes Lidar Observatory, Alan Z. Liu, Bing Cao

Publications

The long-term statistical characteristics of high-frequency quasi-monochromatic gravity waves are presented using multi-year airglow images observed at Andes Lidar Observatory (ALO, 30.3° S, 70.7° W) in northern Chile. The distribution of primary gravity wave parameters including horizontal wavelength, vertical wavelength, intrinsic wave speed, and intrinsic wave period are obtained and are in the ranges of 20–30 km, 15–25 km, 50–100 m s−1, and 5–10 min, respectively. The duration of persistent gravity wave events captured by the imager approximately follows an exponential distribution with an average duration of 7–9 min. The waves tend to propagate against the local background winds and …


M-Cubes: An Efficient And Portable Implementation Of Multi-Dimensional Integration For Gpus, Ioannis Sakiotis, Kamesh Arumugam, Marc Paterno, Desh Ranjan, Balŝa Terzić, Mohammad Zubair Jan 2022

M-Cubes: An Efficient And Portable Implementation Of Multi-Dimensional Integration For Gpus, Ioannis Sakiotis, Kamesh Arumugam, Marc Paterno, Desh Ranjan, Balŝa Terzić, Mohammad Zubair

Computer Science Faculty Publications

The task of multi-dimensional numerical integration is frequently encountered in physics and other scientific fields, e.g., in modeling the effects of systematic uncertainties in physical systems and in Bayesian parameter estimation. Multi-dimensional integration is often time-prohibitive on CPUs. Efficient implementation on many-core architectures is challenging as the workload across the integration space cannot be predicted a priori. We propose m-Cubes, a novel implementation of the well-known Vegas algorithm for execution on GPUs. Vegas transforms integration variables followed by calculation of a Monte Carlo integral estimate using adaptive partitioning of the resulting space. mCubes improves performance on GPUs by maintaining relatively …


Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson Dec 2020

Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson

Student Research Projects

This thesis presents an organized explanation and breakdown of the Maximum Likelihood Expectation Maximization image reconstruction algorithm. This background research was used to develop a means of implementing the algorithm into the imaging code for UNH's Field Deployable Imaging Neutron Detector to improve its ability to resolve complex neutron sources. This thesis provides an overview for this implementation scheme, and include the results of a couple of reconstruction tests for the algorithm. A discussion is given on the current state of the algorithm and its integration with the neutron detector system, and suggestions are given for how the work and …


Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan Jul 2020

Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan

Faculty Publications

A portable LIBS device was used for rapid elemental impurity analysis of plutonium alloys. This device demonstrates the potential for fast, accurate in-situ chemical analysis and could significantly reduce the fabrication time of plutonium alloys.


Subsurface Analytics: Contribution Of Artificial Intelligence And Machine Learning To Reservoir Engineering, Reservoir Modeling, And Reservoir Management, Shahab D. Mohaghegh Apr 2020

Subsurface Analytics: Contribution Of Artificial Intelligence And Machine Learning To Reservoir Engineering, Reservoir Modeling, And Reservoir Management, Shahab D. Mohaghegh

Faculty & Staff Scholarship

Subsurface Analytics is a new technology that changes the way reservoir simulation and modeling is performed. Instead of starting with the construction of mathematical equations to model the physics of the fluid flow through porous media and then modification of the geological models in order to achieve history match, Subsurface Analytics that is a completely AI-based reservoir simulation and modeling technology takes a completely different approach. In AI-based reservoir modeling, field measurements form the foundation of the reservoir model. Using data-driven, pattern recognition technologies; the physics of the fluid flow through porous media is modeled through discovering the best, most …


Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew Feb 2020

Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We present a computational method, termed Wasserstein-induced flux (WIF), to robustly quantify the accuracy of individual localizations within a single-molecule localization microscopy (SMLM) dataset without ground- truth knowledge of the sample. WIF relies on the observation that accurate localizations are stable with respect to an arbitrary computational perturbation. Inspired by optimal transport theory, we measure the stability of individual localizations and develop an efficient optimization algorithm to compute WIF. We demonstrate the advantage of WIF in accurately quantifying imaging artifacts in high-density reconstruction of a tubulin network. WIF represents an advance in quantifying systematic errors with unknown and complex distributions, …


Analytic Threads - Annual Newsletters 2014-2020, Messiah University Jan 2020

Analytic Threads - Annual Newsletters 2014-2020, Messiah University

Educator Scholarship & Departmental Newsletters

Faculty and student updates. Analytic Threads is the annual newsletter of the Department of Computing, Mathematics and Physics at Messiah University. It is sent annually to alumni and is also available electronically at the website messiah.edu/cmp


Generating Electromagnetic Schell-Model Sources Using Complex Screens With Spatially Varying Auto- And Cross-Correlation Functions, Milo W. Hyde Iv Sep 2019

Generating Electromagnetic Schell-Model Sources Using Complex Screens With Spatially Varying Auto- And Cross-Correlation Functions, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any physically realizable electromagnetic Schell-model source. Our technique can be directly implemented on existing vector-beam generators that utilize spatial light modulators for coherence control, beam shaping, and relative phasing. This work significantly extends published research on the subject, where control over the partially coherent source’s cross-spectral density matrix was limited. We begin by presenting the statistical optics theory necessary to derive and implement our method. We then apply our technique, both analytically and in simulation, to produce two electromagnetic Schell-model sources from the literature. We demonstrate control over the full cross-spectral density matrices of …


9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association Sep 2019

9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association

Annual Postdoctoral Science Symposium Abstracts

The mission of the Annual Postdoctoral Science Symposium (APSS) is to provide a platform for talented postdoctoral fellows throughout the Texas Medical Center to present their work to a wider audience. The MD Anderson Postdoctoral Association convened its inaugural Annual Postdoctoral Science Symposium (APSS) on August 4, 2011.

The APSS provides a professional venue for postdoctoral scientists to develop, clarify, and refine their research as a result of formal reviews and critiques of faculty and other postdoctoral scientists. Additionally, attendees discuss current research on a broad range of subjects while promoting academic interactions and enrichment and developing new collaborations.


Application Of Bradford’S Law Of Scattering On Research Publication In Astronomy & Astrophysics Of India, Satish Kumar, Senthilkumar R. Dec 2018

Application Of Bradford’S Law Of Scattering On Research Publication In Astronomy & Astrophysics Of India, Satish Kumar, Senthilkumar R.

Library Philosophy and Practice (e-journal)

The present study is focused on examining the application of Bradford’s law of scattering on research articles published in the field of Astronomy & Astrophysics by Indian scientist during 1988-2017. The bibliographic data was retrieved from Web of Science (WoS) bibliographic data base for different period of time. Total 18,877 journal’s article have been published by Indian scientist in the field of Astronomy & Astrophysics during 1988-2017 which was further retrieved and analyzed separately for different blocks of 10 years as well as for 30 years consolidated too. The core journal of the field was identified. The Bradford law of …


Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl Sep 2018

Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl

Physics Faculty Articles

Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 μmol m−2 s−1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the time series of …


Factors Affecting The Number And Type Of Student Research Products For Chemistry And Physics Students At Primarily Undergraduate Institutions: A Case Study., Birgit Mellis, Patricia Soto, Chrystal D. Bruce, Graciela Lacueva, Anne Wilson, Rasitha Jayasekare Apr 2018

Factors Affecting The Number And Type Of Student Research Products For Chemistry And Physics Students At Primarily Undergraduate Institutions: A Case Study., Birgit Mellis, Patricia Soto, Chrystal D. Bruce, Graciela Lacueva, Anne Wilson, Rasitha Jayasekare

2018 Faculty Bibliography

For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004–2013, statistical analysis indicates that the gender of the student …


Monte Carlo Simulations Of Three-Dimensional Electromagnetic Gaussian Schell-Model Sources, Milo W. Hyde Iv, Santasri Bose-Pillai, Olga Korotkova Feb 2018

Monte Carlo Simulations Of Three-Dimensional Electromagnetic Gaussian Schell-Model Sources, Milo W. Hyde Iv, Santasri Bose-Pillai, Olga Korotkova

Faculty Publications

This article presents a method to simulate a three-dimensional (3D) electromagnetic Gaussian-Schell model (EGSM) source with desired characteristics. Using the complex screen method, originally developed for the synthesis of two-dimensional stochastic electromagnetic fields, a set of equations is derived which relate the desired 3D source characteristics to those of the statistics of the random complex screen. From these equations and the 3D EGSM source realizability conditions, a single criterion is derived, which when satisfied guarantees both the realizability and simulatability of the desired 3D EGSM source. Lastly, a 3D EGSM source, with specified properties, is simulated; the Monte Carlo simulation …


X-Ray Spectroscopy Of Nio And Nanodiamond At Ssrl, Jackson Earl Jan 2018

X-Ray Spectroscopy Of Nio And Nanodiamond At Ssrl, Jackson Earl

STAR Program Research Presentations

The first aspect of this research project focuses on investigating the surface chemistry of high pressure high temperature (HPHT) nanodiamond by using X-ray spectroscopy techniques at the Stanford Synchrotron Radiation Lightsource (SSRL). HPHT nanodiamond is being examined as a biosensing tool for electric field detection based on the fluorescent nitrogen vacancy center hosted within diamond. With use of the transition edge spectrometer (TES), a state-of-the-art X-ray fluorescence detector, we are able to probe the surface and bulk properties of diamond. Preliminary work using density functional theory (DFT) has been done, offering insight into ground state energies and electronic structure. DFT …


Analysis Of Praxis Physics Subject Assessment Examinees And Performance: Who Are Our Prospective Physics Teachers?, Herman Ray Jan 2018

Analysis Of Praxis Physics Subject Assessment Examinees And Performance: Who Are Our Prospective Physics Teachers?, Herman Ray

Faculty and Research Publications

A generally agreed upon tenant of the physics teaching community is the centrality of subject-specific expertise in effective teaching. However, studies which assess the content knowledge of incoming K–12 physics teachers in the U.S. have not yet been reported. Similarly lacking are studies on if or how the demographic makeup of aspiring physics educators is different from previously reported analyses of the actual high school physics teaching workforce. Here we present findings about the demographics and subject knowledge of prospective high school physics teachers using data from Praxis physics subject assessments administered between 2006 and 2016. Our analysis reveals significant …


Cluster-Based Network Proximities For Arbitrary Nodal Subsets, Kenneth S. Berenhaut, Peter S. Barr, Alyssa M. Kogel, Ryan L. Melvin Jan 2018

Cluster-Based Network Proximities For Arbitrary Nodal Subsets, Kenneth S. Berenhaut, Peter S. Barr, Alyssa M. Kogel, Ryan L. Melvin

Faculty & Staff Scholarship

The concept of a cluster or community in a network context has been of considerable interest in a variety of settings in recent years. In this paper, employing random walks and geodesic distance, we introduce a unified measure of cluster-based proximity between nodes, relative to a given subset of interest. The inherent simplicity and informativeness of the approach could make it of value to researchers in a variety of scientific fields. Applicability is demonstrated via application to clustering for a number of existent data sets (including multipartite networks). We view community detection (i.e. when the full set of network nodes …


Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko Dec 2017

Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Improved knowledge of the magnetic field dependent flow properties of nanoparticle-based magnetic fluids is critical to the design of biomedical applications, including drug delivery and cell sorting. To probe the rheology of ferrofluid on a sub-millimeter scale, we examine the paths of 550 μm diameter glass spheres falling due to gravity in dilute ferrofluid, imposing a uniform magnetic field at an angle with respect to the vertical. Visualization of the spheres’ trajectories is achieved using high resolution X-ray phase-contrast imaging, allowing measurement of a terminal velocity while simultaneously revealing the formation of an array of long thread-like accumulations of magnetic …


The Interactions Of Relationships, Interest, And Self-Efficacy In Undergraduate Physics, Remy Dou Mar 2017

The Interactions Of Relationships, Interest, And Self-Efficacy In Undergraduate Physics, Remy Dou

FIU Electronic Theses and Dissertations

This collected papers dissertation explores students’ academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions) has …


Unequal A Priori Probability Multiple Hypothesis Testing In Space Domain Awareness With The Space Surveillance Telescope, Tyler J. Hardy, Stephen C. Cain, Travis F. Blake Jan 2016

Unequal A Priori Probability Multiple Hypothesis Testing In Space Domain Awareness With The Space Surveillance Telescope, Tyler J. Hardy, Stephen C. Cain, Travis F. Blake

Faculty Publications

This paper investigates the ability to improve Space Domain Awareness (SDA) by increasing the number of detectable Resident Space Objects (RSOs) from space surveillance sensors. With matched filter based techniques, the expected impulse response, or Point Spread Function (PSF), is compared against the received data. In the situation where the images are spatially undersampled, the modeled PSF may not match the received data if the RSO does not fall in the center of the pixel. This aliasing can be accounted for with a Multiple Hypothesis Test (MHT). Previously, proposed MHTs have implemented a test with an equal a priori prior …


An Evolutionary Vaccination Game In The Modified Activity Driven Network By Considering The Closeness, Dun Han, Mei Sun Sep 2015

An Evolutionary Vaccination Game In The Modified Activity Driven Network By Considering The Closeness, Dun Han, Mei Sun

Publications and Research

In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ/μ. However, when vaccination is allowed the final density of recovered individual first increases and …


Mapping Open Water Bodeis With Optical Remote Sensing, Mary Ellen O'Donnell, Erika Podest Aug 2015

Mapping Open Water Bodeis With Optical Remote Sensing, Mary Ellen O'Donnell, Erika Podest

STAR Program Research Presentations

There is interest in mapping open water bodies using remote sensing data. Coverage and persistence of open water is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. The presence and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. Predicting the risk of mosquito caused disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions for deployment of preventative measures and control resources. This study, which will try to map open …


Quantifying Measurement Error In Digital Instruments, William B. Laing Iii, Sean Bryant Jul 2015

Quantifying Measurement Error In Digital Instruments, William B. Laing Iii, Sean Bryant

Faculty Works

A first lab experiment clearly illustrates that a glucose meter is actually an excellent source of both random and systematic error, much to the surprise to students and physicians alike. A histogram is constructed and the utility of the standard deviation and standard error to quantify the uncertainty in each measurement and in the mean value, respectively, is demonstrated. From the first lab on, students are challenged to express and interpret confidence intervals in order to form quantitative conclusions. Assessments reveal that many students find this to be surprisingly challenging.


Spin Glass Reflection Of The Decoding Transition For Quantum Error Correcting Codes, Alexey Kovalev, Leonid P. Pryadko Jan 2015

Spin Glass Reflection Of The Decoding Transition For Quantum Error Correcting Codes, Alexey Kovalev, Leonid P. Pryadko

Department of Physics and Astronomy: Faculty Publications

We study the decoding transition for quantum error correcting codes with the help of a mapping to random-bond Wegner spin models. Families of quantum low density parity-check (LDPC) codes with a finite decoding threshold lead to both known models (e.g., random bond Ising and random plaquette Z2 gauge models) as well as unexplored earlier generally non-local disordered spin models with non-trivial phase diagrams. The decoding transition corresponds to a transition from the ordered phase by proliferation of "post-topological" extended defects which generalize the notion of domain walls to non-local spin models. In recently discovered quantum LDPC code families with …


Tuffoam Density Variation Through Radiography, Sergio Contreras Esquivel Aug 2014

Tuffoam Density Variation Through Radiography, Sergio Contreras Esquivel

STAR Program Research Presentations

TufFoam is a low density, high impact tolerant polyurethane foam with good high voltage breakdown developed at the Sandia National Laboratories. Identically shaped samples have been produced with various formulations and production conditions. Eight different variables were studied. Our aim is to compare the density variation of the material when produced and processed under distinct conditions. The density of TufFoam is determined using radiographic imaging. We extract the foam density by fitting the radiographic density of each step in a plastic step wedge with 10 steps from 0.1 to 1.0 inches and applying the resulting equation to convert each pixel …


Modeling A Sensor To Improve Its Efficacy, Nabin K. Malakar, Daniil Gladkov, Kevin H. Knuth May 2013

Modeling A Sensor To Improve Its Efficacy, Nabin K. Malakar, Daniil Gladkov, Kevin H. Knuth

Physics Faculty Scholarship

Robots rely on sensors to provide them with information about their surroundings. However, high-quality sensors can be extremely expensive and cost-prohibitive. Thus many robotic systems must make due with lower-quality sensors. Here we demonstrate via a case study how modeling a sensor can improve its efficacy when employed within a Bayesian inferential framework. As a test bed we employ a robotic arm that is designed to autonomously take its own measurements using an inexpensive LEGO light sensor to estimate the position and radius of a white circle on a black field. The light sensor integrates the light arriving from a …


On Improvement In Estimating Population Parameter(S) Using Auxiliary Information, Florentin Smarandache, Rajesh Singh Jan 2013

On Improvement In Estimating Population Parameter(S) Using Auxiliary Information, Florentin Smarandache, Rajesh Singh

Branch Mathematics and Statistics Faculty and Staff Publications

The purpose of writing this book is to suggest some improved estimators using auxiliary information in sampling schemes like simple random sampling and systematic sampling. This volume is a collection of five papers, written by eight coauthors (listed in the order of the papers): Manoj K. Chaudhary, Sachin Malik, Rajesh Singh, Florentin Smarandache, Hemant Verma, Prayas Sharma, Olufadi Yunusa, and Viplav Kumar Singh, from India, Nigeria, and USA. The following problems have been discussed in the book: In chapter one an estimator in systematic sampling using auxiliary information is studied in the presence of non-response. In second chapter some improved …


Spectral Cross Correlation As A Supervised Approach For The Analysis Of Complex Raman Datasets: The Case Of Nanoparticles In Biological Cells, Mark Keating, Franck Bonnier, Hugh Byrne Oct 2012

Spectral Cross Correlation As A Supervised Approach For The Analysis Of Complex Raman Datasets: The Case Of Nanoparticles In Biological Cells, Mark Keating, Franck Bonnier, Hugh Byrne

Articles

Spectral Cross-correlation is introduced as a methodology to identify the presence and subcellular distribution of nanoparticles in cells. Raman microscopy is employed to spectroscopically image biological cells previously exposed to polystyrene nanoparticles, as a model for the study of nano-bio interactions. The limitations of previously deployed strategies of K-means clustering analysis and principal component analysis are discussed and a novel methodology of Spectral Cross Correlation Analysis is introduced and compared with the performance of Classical Least Squares Analysis, in both unsupervised and supervised modes. The previous study demonstrated the feasibility of using Raman spectroscopy to map cells and identify polystyrene …


Global Dimension Of Ci: Compete Or Collaborate, Arden L. Bement Jr. Dec 2010

Global Dimension Of Ci: Compete Or Collaborate, Arden L. Bement Jr.

PPRI Digital Library

No abstract provided.


Second-Order Statistics Of Stochastic Electromagnetic Beams Propagating Through Non-Kolmogorov Turbulence, Elena Shchepakina, Olga Korotkova May 2010

Second-Order Statistics Of Stochastic Electromagnetic Beams Propagating Through Non-Kolmogorov Turbulence, Elena Shchepakina, Olga Korotkova

Physics Articles and Papers

We present a detailed investigation, qualitative and quantitative, on how the atmospheric turbulence with a non-Kolmogorov power spectrum affects the major statistics of stochastic electromagnetic beams, such as the spectral composition and the states of coherence and polarization. We suggest a detailed survey on how these properties evolve on propagation of beams generated by electromagnetic Gaussian Schell-model sources, depending on the fractal constant α of the atmospheric power spectrum.