Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Optics

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 929

Full-Text Articles in Physics

Comparison Of The Fluorescence Of Bulk Cadmium Sulfide And Cadmium Sulfide Nanoparticles, Jacob Goranson May 2024

Comparison Of The Fluorescence Of Bulk Cadmium Sulfide And Cadmium Sulfide Nanoparticles, Jacob Goranson

Celebrating Scholarship and Creativity Day (2018-)

The fluorescence of bulk cadmium sulfide and cadmium sulfide nanoparticles were compared. This was done using an 800-nm, unamplified Ti:sapphire laser producing 50-fs pulses. The pulses were frequency doubled using a beta barium borate (BBO) crystal. The 400-nm beam was used to induce fluorescence in the nanoparticles, while the original 800-nm beam was used to induce fluorescence in the bulk CdS by two-photon absorption. The bulk CdS showed a single fluorescent peak at 523 nm. The nanoparticles showed fluorescence at various wavelengths across the visible spectrum. In general, the nanoparticles showed a broad fluorescent spectrum between 500 nm and 750 …


Measurement Of Transmission Efficiency Of Blue Light Blocking Devices, Jada Lee May 2024

Measurement Of Transmission Efficiency Of Blue Light Blocking Devices, Jada Lee

Honors Theses

Technology and light sources have experienced a revolution in recent years leading to the production of light emitting diode (LED) bulbs. White-light LED bulbs undergo degradation over time, leading to a rise in color temperature and a proportional increase in the emission of blue light from these bulbs. The small size of LEDs makes them the optimal choice for electronic devices because of their limited screen size. This means that blue light now exists in red, green, and blue solid-state illumination systems that did not exist a decade ago. It is debated if blue light induces toxic effects on the …


Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle Apr 2024

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle

Faculty Publications

Zinc germanium diphosphide (ZnGeP2) is a ternary semiconductor best known for its nonlinear optical properties. A primary application is optical parametric oscillators operating in the mid-infrared region. Controlled donor doping provides a method to minimize the acceptor-related absorption bands that limit the output power of these devices. In the present study, a ZnGeP2 crystal is doped with selenium during growth. Selenium substitutes for phosphorus and serves as a deep donor. Significant concentrations of native defects (zinc vacancies, germanium-on-zinc antisites, and phosphorous vacancies) are also present in the crystal. Electron paramagnetic resonance (EPR) is used to establish the …


6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew Mar 2024

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We develop six-dimensional single-molecule orientation-localization microscopy (SMOLM) to measure the 3D positions and 3D orientations simultaneously of single fluorophores. We show how careful optimization of phase and polarization modulation components can encode phase, polarization, and angular spectrum information from each fluorescence photon into a microscope’s dipole-spread function. We used the transient binding and blinking of Nile red (NR) to characterize the helical structure of fibrils formed by designed amphipathic peptides, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. We also deployed merocyanine 540 to uncover the interfacial architectures of biomolecular condensates.


Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Maria Victoria Collados, Jesús Atencia, Suzanne Martin Feb 2024

Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Maria Victoria Collados, Jesús Atencia, Suzanne Martin

Articles

Holographic optical elements (HOEs) have the potential to enable more compact, versatile, and lightweight optical designs, but many challenges remain. Volume HOEs have the advantage of high diffraction efficiency, but they present both chromatic selectivity and chromatic dispersion, which impact their use with wide spectrum light sources. Single-color light emitting diode (LED) sources have a narrow spectrum that reduces these issues and this makes them better suited for use with volume HOEs. However, the LED source size must be taken into consideration for compact volume HOE-LED systems. To investigate the design limits for compact HOE-LED systems, a theoretical and experimental …


Two-Photon Absorption And Fluorescence Of Cadmium Sulfide, Jacob Goranson, Gregory J. Taft Feb 2024

Two-Photon Absorption And Fluorescence Of Cadmium Sulfide, Jacob Goranson, Gregory J. Taft

Physics Faculty Publications

The two-photon absorption and fluorescence of bulk cadmium sulfide were studied using 50-fs, 800-nm pulses from an unamplified Ti:sapphire laser. The fluorescence spectrum was measured to have a main peak at 522 nm, and the power of the fluorescence was shown to vary quadratically with the 800-nm beam power. This supports the theory that the fluorescence is excited by two-photon absorption and confirms previous work done with longer duration, higher energy excitation pulses. Pump-probe measurements provided additional confirmation of the two-photon absorption. Measured spectral broadening of the wings of the laser spectrum also was observed, which likely is due to …


Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton Feb 2024

Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

CdSiP2 crystals are used in optical parametric oscillators to produce tunable output in the mid-infrared. As expected, the performance of the OPOs is adversely affected by residual optical absorption from native defects that are unintentionally present in the crystals. Electron paramagnetic resonance (EPR) identifies these native defects. Singly ionized silicon vacancies (V-Si) are responsible for broad optical absorption bands peaking near 800, 1033, and 1907 nm. A fourth absorption band, peaking near 630 nm, does not involve silicon vacancies. Exposure to 1064 nm light when the temperature of the CdSiP2 crystal is near 80K converts …


Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond Jan 2024

Single-Stage Few-Cycle Pulse Amplification, Sagnik Ghosh, Nathan G. Drouillard, Tj Hammond

Physics Publications

Kerr instability can be exploited to amplify visible, near-infrared, and midinfrared ultrashort pulses. We use the results of Kerr instability amplification theory to inform our simulations amplifying few-cycle pulses. We show that the amplification angle dependence is simplified to the phase-matching condition of four-wave mixing when the intense pump is considered. Seeding with few-cycle pulses near the pump leads to broadband amplification without spatial chirp, while longer pulses undergo compression through amplification. Pumping in the midinfrared leads to multioctave spanning amplified pulses with single-cycle duration not previously predicted. We discuss limitations of the amplification process and optimizing pump and seed …


Exponential Fusion Of Interpolated Frames Network (Efif-Net): Advancing Multi-Frame Image Super-Resolution With Convolutional Neural Networks, Hamed Elwarfalli, Dylan Flaute, Russell C. Hardie Jan 2024

Exponential Fusion Of Interpolated Frames Network (Efif-Net): Advancing Multi-Frame Image Super-Resolution With Convolutional Neural Networks, Hamed Elwarfalli, Dylan Flaute, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Convolutional neural networks (CNNs) have become instrumental in advancing multi-frame image super-resolution (SR), a technique that merges multiple low-resolution images of the same scene into a high-resolution image. In this paper, a novel deep learning multi-frame SR algorithm is introduced. The proposed CNN model, named Exponential Fusion of Interpolated Frames Network (EFIF-Net), seamlessly integrates fusion and restoration within an end-to-end network. Key features of the new EFIF-Net include a custom exponentially weighted fusion (EWF) layer for image fusion and a modification of the Residual Channel Attention Network for restoration to deblur the fused image. Input frames are registered with subpixel …


Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu Jan 2024

Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Telemedicine has the potential to improve access and delivery of healthcare to diverse and aging populations. Recent advances in technology allow for remote monitoring of physiological measures such as heart rate, oxygen saturation, blood glucose, and blood pressure. However, the ability to accurately detect falls and monitor physical activity remotely without invading privacy or remembering to wear a costly device remains an ongoing concern. Our proposed system utilizes a millimeter-wave (mmwave) radar sensor (IWR6843ISK-ODS) connected to an NVIDIA Jetson Nano board for continuous monitoring of human activity. We developed a PointNet neural network for real-time human activity monitoring that can …


Development Of An Optical Test Bed For The Fabrication And Characterisation Of An Analog Holographic Wavefront Sensor, Emma Branigan, Andreas Zepp, Suzanne Martin, Matthew Sheehan, Szymon Gladysz, Kevin Murphy Dec 2023

Development Of An Optical Test Bed For The Fabrication And Characterisation Of An Analog Holographic Wavefront Sensor, Emma Branigan, Andreas Zepp, Suzanne Martin, Matthew Sheehan, Szymon Gladysz, Kevin Murphy

Conference Papers

A new holographic recording setup has been developed for the fabrication of single- and multi-mode photopolymer-based analog holographic wavefront sensors. A second setup has been built and used to characterise the sensor at several wavelengths.


Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán Nov 2023

Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acoustic levitation has become a crucial technique for contactless manipulation in several fields, particularly in biological applications. However, its application in the photonics field remains largely unexplored. In this study, we implement an affordable and innovative phased-array levitator that enables stable trapping in the air of micrometer dye-doped droplets, thereby enabling the creation of microlasers. For the first time, this paper presents a detailed performance of the levitated microlaser cavity, supported by theoretical analysis concerning the hybrid technology based on the combination of whispering-gallery modes and acoustic fields. The pressure field distribution inside the acoustic cavity is numerically solved and …


System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers Nov 2023

System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers

Faculty Publications

We provide an in-depth analysis of noise considerations in coherent imaging, accounting for speckle and scintillation in addition to “conventional” image noise. Specifically, we formulate closed-form expressions for total effective noise in the presence of speckle only, scintillation only, and speckle combined with scintillation. We find analytically that photon shot noise is uncorrelated with both speckle and weak-to-moderate scintillation, despite their shared dependence on the mean signal. Furthermore, unmitigated speckle and scintillation noise tends to dominate coherent-imaging performance due to a squared mean-signal dependence. Strong coupling occurs between speckle and scintillation when both are present, and we characterize this behavior …


Active-Illumination Extension To The Priest And Meier Pbrdf, Mark F. Spencer, Milo W. Hyde Iv, Santasri R. Bose-Pillai, Michael A. Marciniak Oct 2023

Active-Illumination Extension To The Priest And Meier Pbrdf, Mark F. Spencer, Milo W. Hyde Iv, Santasri R. Bose-Pillai, Michael A. Marciniak

Faculty Publications

This paper develops a 3D vector solution for the scattering of partially coherent laser-beam illumination from statistically rough surfaces. Such a solution enables a rigorous comparison to the well-known Priest and Meier polarimetric bidirectional reflectance distribution function (pBRDF) [Opt Eng 41(5),988 (2002).]. Overall, the comparison shows excellent agreement for the normalized spectral density and the degree of polarization. Based on this agreement, the 3D vector solution also enables an extension to the Priest and Meier pBRDF that accounts for the effects of active illumination. In particular, the 3D vector solution enables the development of a closed-form expression for the spectral …


Propagation Of Spatiotemporal Optical Vortex Beams In Linear, Second-Order Dispersive Media, Milo W. Hyde Iv, Miguel A. Porras Jul 2023

Propagation Of Spatiotemporal Optical Vortex Beams In Linear, Second-Order Dispersive Media, Milo W. Hyde Iv, Miguel A. Porras

Faculty Publications

In this paper, we study the behaviors of spatiotemporal optical vortex (STOV) beams propagating in linear dispersive media. Starting with the Fresnel diffraction integral, we derive a closed-form expression for the STOV field at any propagation distance z in a general second-order dispersive medium. We compare our general result to special cases published in the literature and examine the characteristics of higher-order STOV beams propagating in dispersive materials by varying parameters of the medium and source-plane STOV field. We validate our analysis by comparing theoretical predictions to numerical computations of a higher-order STOV beam propagating through fused silica, where we …


Wave Optics Approach To Solar Cell Brdf Modeling With Experimental Results, Madilynn Compean, Todd V. Small, Milo W. Hyde Iv, Michael Marciniak Jul 2023

Wave Optics Approach To Solar Cell Brdf Modeling With Experimental Results, Madilynn Compean, Todd V. Small, Milo W. Hyde Iv, Michael Marciniak

Faculty Publications

Light curve analysis is often used to discern information about satellites in geosynchronous orbits. Solar panels, comprising a large part of the satellite’s body, contribute significantly to these light curves. Historically, theoretical bidirectional reflectance distribution functions (BRDFs) have failed to capture key features in the scattered light from solar panels. In recently published work, a new solar cell BRDF was developed by combining specular microfacet and “two-slit” diffraction terms to capture specular and periodic/array scattering, respectively. This BRDF was experimentally motivated and predicted many features of the solar cell scattered irradiance. However, the experiments that informed the BRDF were limited …


Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Jun 2023

Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

In this work, we investigate a class of planar photonic structures operating as passive thermoregulators. The radiative cooling process is adjusted through the incorporation of a phase change material (Vanadium Dioxide, VO2) in conjunction with a layer of transparent conductive oxide (Aluminum-doped Zinc Oxide, AZO). VO2 is known to undergo a phase transition from the “dielectric” phase to the “plasmonic” or “metallic” phase at a critical temperature close to 68°C. In addition, AZO shows plasmonic properties at the long-wave infrared spectrum, which, combined with VO2, provides a rich platform to achieve low reflections across the …


Optical Characterisation Of Holographic Diffusers And Bangerter Foils For Treatment Of Amblyopia, Matthew Hellis, Suzanne Martin, Matthew Sheehan, Kevin Murphy Jun 2023

Optical Characterisation Of Holographic Diffusers And Bangerter Foils For Treatment Of Amblyopia, Matthew Hellis, Suzanne Martin, Matthew Sheehan, Kevin Murphy

Articles

Amblyopia is a significant issue for children worldwide, and current treatment methods have drawbacks that can hinder treatment effectiveness and/or patient experience. This study proposes a new treatment method using holographic diffusers while also comparing their optical characteristics to a current treatment method (Bangerter foils). Holographic diffusers were developed by optically patterning thin polymer layers on a micron scale. Two compositions of photopolymer (acrylamide and diacetone acrylamide based) are analysed herein. Characterisation shows that holographic diffusers of either composition can achieve a wide range of on-axis intensity reductions, allowing for precise and customisable treatment levels by altering recording exposure time …


Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Jesús Atencia, Mª Victoria Collados, Suzanne Martin May 2023

Modelling Hoe Performance With An Extended Source; Experimental Investigation Using Misaligned Point Sources, Jorge Lasarte, Kevin Murphy, Izabela Naydenova, Jesús Atencia, Mª Victoria Collados, Suzanne Martin

Conference Papers

Holographic Optical Elements (HOEs) have the potential to enable more compact, versatile and lightweight optical designs, but many challenges remain. Volume HOE’s have the advantage of high diffraction efficiency but they present both chromatic selectivity and chromatic dispersion which impact on their use with wide spectrum light sources. Single-colour LED sources have a narrow spectrum that reduces these issues and this makes them better suited for use with volume HOEs. However, the LED source size must be taken into consideration for compact volume HOE-LED systems. To investigate the design limits for compact HOE-LED systems, a theoretical and experimental study was …


Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily May 2023

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily

AFIT Patents

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim Apr 2023

Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction, Yanwei Xiong Apr 2023

Diffractive Imaging Of Laser Induced Molecular Reactions With Kiloelectron-Volt Ultrafast Electron Diffraction, Yanwei Xiong

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Capturing the structural changes during a molecular reaction with ultrafast electron diffraction (UED) requires a high spatiotemporal resolution and sufficiently high signal-to-noise to record the signals with high fidelity. In this dissertation, I have focused on the development of a tabletop gas phase keV-UED setup with a femtosecond temporal resolution. A DC electron gun was employed to generate electron pulses with a high repetition rate of 5 kHz. The space charge effect in the electron pulse was ameliorated by compressing the 90 keV electron pulse longitudinally with a time varying electric field in an RF cavity. The velocity mismatch between …


Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison Mar 2023

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison

Engineering Faculty Articles and Research

In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they …


Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers Mar 2023

Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers

Faculty Publications

This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven convection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model introduced here solves for the fluid dynamics along the propagation path using a Boussinesq approximation to the incompressible Navier–Stokes equations. The resultant temperature fluctuations were coupled to refractive index fluctuations, and the beam propagation was modeled using the paraxial wave equation. Fixed-point methods were used to solve the fluid equations as well as to couple the beam propagation to the steady-state flow. The simulated results are discussed relative to recent experimental …


Development Of Holographic Optical Elements For Use In Wound Monitoring, Pamela Stoeva, Tatsiana Mikulchyk, Brian Rogers, M. Oubaha, Suzanne Martin, Dervil Cody, M.A. Ferrara, G. Coppola, Izabela Naydenova Jan 2023

Development Of Holographic Optical Elements For Use In Wound Monitoring, Pamela Stoeva, Tatsiana Mikulchyk, Brian Rogers, M. Oubaha, Suzanne Martin, Dervil Cody, M.A. Ferrara, G. Coppola, Izabela Naydenova

Conference Papers

Wounds that fail to heal impact the quality of life of 2.5 % of the total population. The costs of chronic wound care will reach $15–22 billion by 2024. These alarming statistics reveal the financial strain for both the medical industry and society. A solution can be found in compact and accessible sensors that offer real-time analysis of the wound site, facilitating continuous monitoring and immediate treatment, if required. Benefits of these sensors include reduction of cost and can extend the reach of healthcare to remote areas. The progression of a wound site can be closely monitored with holographic optical …


Fabrication And Characterisation Of Large Area, Uniform And Controllable Surface Relief Patterns In Photopolymer Material, Owen Kearney, Izabela Naydenova Jan 2023

Fabrication And Characterisation Of Large Area, Uniform And Controllable Surface Relief Patterns In Photopolymer Material, Owen Kearney, Izabela Naydenova

Conference Papers

As the risk of antibiotic resistant pathogens increases, development of convenient point of care devices is essential. Such devices would help avoid infection – ensure cleanliness of environments and assist in bacteria analysis. The ultimate aim of the research presented here is to develop a compact, cost effective, easy to use optical device which is capable of detecting and quantifying bacteria in an aqueous sample. The surface relief patterns have a dual role, they provide a diffracted light signal, and control the adhesion of the bacteria to the surface. The strength of the diffracted signal is expected to provide a …


Design, Construction, And Stabilization Of An Adjustable Repetition Rate Frequency Comb For Precision Spectroscopy, Matthew Carter Jan 2023

Design, Construction, And Stabilization Of An Adjustable Repetition Rate Frequency Comb For Precision Spectroscopy, Matthew Carter

Physics, Astronomy and Geophysics Honors Papers

Optical frequency combs have numerous applications across the sciences. One of the most powerful applications is in molecular spectroscopy, which takes advantage of both the coherence of lasers and combs’ inherent broad bandwidth. One well-established design is the erbium fiber comb, which is popular due to its low cost and relative ease of construction. I have modified the traditional all-fiber design by introducing an adjustable free-space section which allows for adjustments to the path length, and thus the comb’s repetition rate. This low-cost addition allows for repetition rate matching, a necessity for dual-comb spectroscopy, and active repetition rate stabilization, which …


The Development Of Optomechanical Sensors—Integrating Diffractive Optical Structures For Enhanced Sensitivity, Faolan Radford Mcgovern, Aleksandra Hernik, Catherine M. Grogan, George Amarandei, Izabela Naydenova Jan 2023

The Development Of Optomechanical Sensors—Integrating Diffractive Optical Structures For Enhanced Sensitivity, Faolan Radford Mcgovern, Aleksandra Hernik, Catherine M. Grogan, George Amarandei, Izabela Naydenova

Conference Papers

The term optomechanical sensors describes devices based on coupling the optical and mechanical sensing principles. The presence of a target analyte leads to a mechanical change, which, in turn, determines an alteration in the light propagation. Having higher sensitivity in comparison with the individual technologies upon which they are based, the optomechanical devices are used in biosensing, humidity, temperature, and gases detection. This perspective focuses on a particular class, namely on devices based on diffractive optical structures (DOS). Many configurations have been developed, including cantilever- and MEMS-type devices, fiber Bragg grating sensors, and cavity optomechanical sensing devices. These state-of-the-art sensors …


Color-Changing Reflection Hologram For Quality Assurance Of Therapeutic Ultrasound Systems, Tatsiana Mikulchyk, John Walsh, Jacinta Browne, Izabela Naydenova, Dervil Cody Jan 2023

Color-Changing Reflection Hologram For Quality Assurance Of Therapeutic Ultrasound Systems, Tatsiana Mikulchyk, John Walsh, Jacinta Browne, Izabela Naydenova, Dervil Cody

Articles

The acoustic output of clinical therapeutic ultrasound equipment requires regular quality assurance (QA) testing to ensure the safety and efficacy of the treatment and that any potentially harmful deviations from the expected output power density are detected as soon as possible. A hologram, consisting of a reflection grating fabricated in an acrylate photopolymer film, has been developed to produce an immediate, visible, and permanent change in the color of the reconstructed hologram from red to green in response to incident ultrasound energy. The influence of the therapeutic ultrasound insonation parameters (exposure time, ultrasound power density, and proximity to the point …


Design And Fabrication Of Volume Holographic Optical Couplers For A Range Of Non-Normal Incidence Angles, Dipanjan Chakraborty, Rosen Georgiev, Sinead Aspell, Izabela Naydenova, Suzanne Martin Jan 2023

Design And Fabrication Of Volume Holographic Optical Couplers For A Range Of Non-Normal Incidence Angles, Dipanjan Chakraborty, Rosen Georgiev, Sinead Aspell, Izabela Naydenova, Suzanne Martin

Conference Papers

A theoretical model has previously been developed to calculate the holographic recording beam angles required in air (at any recording wavelength) to produce a Volume Holographic Optical Element (VHOE) for operation as a coupler for different input and output angles. In this paper, the experimental study is extended to further validate the VHOE coupler design and fabrication approach for additional incident beam angles, comparing -40° -45° and -50° (in air). The output angle for each VHOE is +45° within the medium and the coupler operational wavelength is 633nm. Holographic recording in Bayfol HX 200 photopolymer at 532nm is used to …