Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Oil, Gas, and Energy

Spent reactor fuels

Articles 1 - 3 of 3

Full-Text Articles in Physics

Preparation Studies For Secondary Electron Emission Experiments On Superconducting Niobium, Anoop George, Robert A. Schill Jr. Mar 2004

Preparation Studies For Secondary Electron Emission Experiments On Superconducting Niobium, Anoop George, Robert A. Schill Jr.

Transmutation Sciences Materials (TRP)

Accelerator driven transmutation of waste is one complementary approach to deal with spent nuclear fuel as compared to permanent storage. High-energy protons generated by a particle accelerator collide with a heavy metal target producing neutrons. Long-lived radioactive isotopes interacting with the neutrons transmute into shorter-lived isotopes. To generate the high-energy protons efficiently, linear accelerators use multi-cell superconducting radio frequency (RF) cavities made of niobium. Superconducting niobium cavities have several advantages, including small power dissipation. The high electromagnetic fields present in these cavities may result in undesired field emission from surface imperfections with the probability of generating an avalanche of secondary …


The Fission Properties Of Curium Separated From Spent Nuclear Fuel, William Culbreth, Elizabeth Bakker, Jason Viggato Apr 2002

The Fission Properties Of Curium Separated From Spent Nuclear Fuel, William Culbreth, Elizabeth Bakker, Jason Viggato

Separations Campaign (TRP)

Curium poses special problems in the chemical preparation of spent nuclear fuel for transmutation. Once separated from the other minor actinides, the seven curium isotopes in spent fuel can lead to nuclear fission with the subsequent release of a large amount of radiation. Several isotopes of curium also generate a significant amount of heat by radioactive decay. Sustained fission can be avoided by preventing the accumulation by more that a critical mass of curium. The heat generation of curium presents even more restriction on the mass of curium that can safely be contained in one location.

To analyze the nuclear …


Assessment Of Criticality Safety For Cylindrical Containers To Be Used In The Processing Of Spent Fuel, William Culbreth, Daniel R. Lowe, Jason Viggato Oct 2001

Assessment Of Criticality Safety For Cylindrical Containers To Be Used In The Processing Of Spent Fuel, William Culbreth, Daniel R. Lowe, Jason Viggato

Separations Campaign (TRP)

The UREX process separates uranium from transuranic wastes (TRU) and fission products (FP). Nuclear reactors require fissile isotopes that will absorb neutrons and break apart into smaller nuclei while releasing a large amount of energy as well as multiple neutrons. Fissile isotopes in spent fuel include not only 235U, but also 239Pu, 241Pu, and several isotopes of americium (Am) and curium (Cm).

TRU contains the actinides with atomic numbers greater than that of uranium. This includes Pu, Np, Am, and Cm. When TRU is separated from uranium, the TRU still poses a significant risk of sustaining a …