Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Mathematics

2020

Institution
Keyword
Publication

Articles 1 - 23 of 23

Full-Text Articles in Physics

Eureka Moment As Divine Spark In The Light Of Direct Experience With The Spirit And Nature, Victor Christianto, Florentin Smarandache Dec 2020

Eureka Moment As Divine Spark In The Light Of Direct Experience With The Spirit And Nature, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In the ancient world, the Greeks believed that all great insights came from one of nine muses, divine sisters who brought inspiration to mere mortals. In the modern world, few people still believe in the muses, but we all still love to hear stories of sudden inspiration. Like Newton and the apple, or Archimedes and the bathtub (both another type of myth), we’re eager to hear and to share stories about flashes of insight. But what does it take to be actually creative? How to have such a flash insight? Turns out, there is real science behind "aha moments." We …


Need For Shift-Invariant Fractional Differentiation Explains The Appearance Of Complex Numbers In Physics, Olga Kosheleva, Vladik Kreinovich Dec 2020

Need For Shift-Invariant Fractional Differentiation Explains The Appearance Of Complex Numbers In Physics, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

Complex numbers are ubiquitous in physics, they lead to a natural description of different physical processes and to efficient algorithms for solving the corresponding problems. But why this seemingly counterintuitive mathematical construction is so natural here? In this paper, we provide a possible explanation of this phenomenon: namely, we show that complex numbers appear if take into account that some physical system are described by derivatives of fractional order and that a physically meaningful analysis of such derivatives naturally leads to complex numbers.


Making Artificial Cips Data With A Generative Adversarial Neural Network, Austin Hedges Nov 2020

Making Artificial Cips Data With A Generative Adversarial Neural Network, Austin Hedges

Fall Showcase for Research and Creative Inquiry

Polar mesospheric clouds (PMCs) have been studied for thirteen years by NASA's Aeronomy of Ice in the Mesosphere (AIM) satellite. The Cloud Imaging and Particle Size (CIPS) instrument onboard AIM has taken many images of PMCs over this time. Such a large number of images makes CIPS data ideal for training neural networks which require large datasets. CIPS images were used to train a Generative Adversarial Network (GAN) to train towards being able to generate purely artificial CIPS-like images.


Effective Number Theory: Counting The Identities Of A Quantum State, Ivan Horváth, Robert Mendris Nov 2020

Effective Number Theory: Counting The Identities Of A Quantum State, Ivan Horváth, Robert Mendris

Anesthesiology Faculty Publications

Quantum physics frequently involves a need to count the states, subspaces, measurement outcomes, and other elements of quantum dynamics. However, with quantum mechanics assigning probabilities to such objects, it is often desirable to work with the notion of a “total” that takes into account their varied relevance. For example, such an effective count of position states available to a lattice electron could characterize its localization properties. Similarly, the effective total of outcomes in the measurement step of a quantum computation relates to the efficiency of the quantum algorithm. Despite a broad need for effective counting, a well-founded prescription has not …


An Expanded Model Of Unmatter From Neutrosophic Logic Perspective: Towards Matter-Spirit Unity View, Florentin Smarandache, Victor Christianto, Robert Neil Boyd Aug 2020

An Expanded Model Of Unmatter From Neutrosophic Logic Perspective: Towards Matter-Spirit Unity View, Florentin Smarandache, Victor Christianto, Robert Neil Boyd

Branch Mathematics and Statistics Faculty and Staff Publications

In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the variations surround three parameters called T, I, F (truth, indeterminacy, falsehood) which can take a range of values. A previous paper in IJNS, 2020 shortly reviews the links among aether and matter creation from the perspective of Neutrosophic Logic. In any case, matter creation process in nature stays a major puzzle for physicists, scientists and other science analysts. To this issue neutrosophic logic offers an answer: "unmatter." This paper examines an extended model of unmatter, to incorporate issue soul solidarity. So, …


Spacetime Groups, Ian M. Anderson, Charles G. Torre Jul 2020

Spacetime Groups, Ian M. Anderson, Charles G. Torre

All Physics Faculty Publications

A spacetime group is a connected 4-dimensional Lie group G endowed with a left invariant Lorentz metric h and such that the connected component of the isometry group of h is G itself. The Newman-Penrose formalism is used to give an algebraic classification of spacetime groups, that is, we determine a complete list of inequivalent spacetime Lie algebras, which are pairs, (g, n), with g being a 4-dimensional Lie algebra and n being a Lorentzian inner product on g. A full analysis of the equivalence problem for spacetime Lie algebras is given which leads to a completely …


Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati Jun 2020

Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

No abstract provided.


Acoustic Versus Electromagnetic Field Theory: Scalar, Vector, Spinor Representations And The Emergence Of Acoustic Spin, Lucas Burns, Konstantin Y. Bliokh, Franco Nori, Justin Dressel May 2020

Acoustic Versus Electromagnetic Field Theory: Scalar, Vector, Spinor Representations And The Emergence Of Acoustic Spin, Lucas Burns, Konstantin Y. Bliokh, Franco Nori, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

We construct a novel Lagrangian representation of acoustic field theory that describes the local vector properties of longitudinal (curl-free) acoustic fields. In particular, this approach accounts for the recently-discovered nonzero spin angular momentum density in inhomogeneous sound fields in fluids or gases. The traditional acoustic Lagrangian representation with a scalar potential is unable to describe such vector properties of acoustic fields adequately, which are however observable via local radiation forces and torques on small probe particles. By introducing a displacement vector potential analogous to the electromagnetic vector potential, we derive the appropriate canonical momentum and spin densities as conserved Noether …


A Note On The Fine Structure Constant, Bilal Khan, Irshadullah Khan Apr 2020

A Note On The Fine Structure Constant, Bilal Khan, Irshadullah Khan

CSE Technical Reports

We derive the numerical value of the fine structure constant in purely number-theoretic terms, under the assumption that in a system of charges between two parallel conducting plates, the Casimir energy and the mutual Coulomb interaction energy agree.


A Note On The Fine Structure Constant, Bilal Khan, Irshadullah Khan Apr 2020

A Note On The Fine Structure Constant, Bilal Khan, Irshadullah Khan

Department of Sociology: Faculty Publications

We derive the numerical value of the fine structure constant $\alpha$ in purely number-theoretic terms, under the assumption that in a system of charges between two parallel conducting plates, the Casimir energy and the mutual Coulomb interaction energy agree.


A Note On The Fine Structure Constant, Bilal Khan, Irshadullah Khan Apr 2020

A Note On The Fine Structure Constant, Bilal Khan, Irshadullah Khan

Department of Sociology: Faculty Publications

We derive the numerical value of the fine structure constant in purely number-theoretic terms, under the assumption that in a system of charges between two parallel conducting plates, the Casimir energy and the mutual Coulomb interaction energy agree.


Volume 12, Haleigh James, Hannah Meyls, Hope Irvin, Megan E. Hlavaty, Samara L. Gall, Austin J. Funk, Karyn Keane, Sarah Ghali, Antonio Harvey, Andrew Jones, Rachel Hazelwood, Madison Schmitz, Marija Venta, Haley Tebo, Jeremiah Gilmer, Bridget Dunn, Benjamin Sullivan, Mckenzie Johnson Apr 2020

Volume 12, Haleigh James, Hannah Meyls, Hope Irvin, Megan E. Hlavaty, Samara L. Gall, Austin J. Funk, Karyn Keane, Sarah Ghali, Antonio Harvey, Andrew Jones, Rachel Hazelwood, Madison Schmitz, Marija Venta, Haley Tebo, Jeremiah Gilmer, Bridget Dunn, Benjamin Sullivan, Mckenzie Johnson

Incite: The Journal of Undergraduate Scholarship

Introduction, Dr. Roger A. Byrne, Dean

From the Editor, Dr. Larissa "Kat" Tracy

From the Designers, Rachel English, Rachel Hanson

Immortality in the Mortal World: Otherworldly Intervention in "Lanval" and "The Wife of Bath's Tale" by Haleigh James

Analysis of Phenolic Compounds in Moroccan Olive Oils by HPLC by Hannah Meyls

Art by Hope Irvin

The Effects of Cell Phone Use on Gameplay Enjoyment and Frustration by Megan E. Hlavaty, Samara L. Gall, and Austin J. Funk

Care, No Matter What: Planned Parenthood's Use of Organizational Rhetoric to Expand its Reputation by Karyn Keane

Analysis of Petroleum Products for …


Response To Pitkanen’S Solar System Model: Towards Gross-Pitaevskiian Description Of Solar System And Galaxies And More Evidence Of Chiral Superfluid Vortices, Victor Christianto, Florentin Smarandache, Yunita Umniyati Apr 2020

Response To Pitkanen’S Solar System Model: Towards Gross-Pitaevskiian Description Of Solar System And Galaxies And More Evidence Of Chiral Superfluid Vortices, Victor Christianto, Florentin Smarandache, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

In a new paper in recent issue of this journal (PSTJ), Prof. M. Pitkanen describes a solar system model inspired by spiral galaxies. While we appreciate his new approach, we find it lacks substantial discussion on the nature of vortices and chirality in galaxy. Therefore we submit a viewpoint that Gross-Pitaevskii model can be a more complete description of both solar system and also spiral galaxies, especially taking into account the nature of chirality and vortices in galaxies. In this article, we also hope to bring out some correspondence among existing models, so we discuss shortly: the topological vortice approach, …


Can We Preserve Physically Meaningful "Macro" Analyticity Without Requiring Physically Meaningless "Micro" Analyticity?, Olga Kosheleva, Vladik Kreinovich Feb 2020

Can We Preserve Physically Meaningful "Macro" Analyticity Without Requiring Physically Meaningless "Micro" Analyticity?, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

Physicists working on quantum field theory actively used "macro" analyticity -- e.g., that an integral of an analytical function over a large closed loop is 0 -- but they agree that "micro" analyticity -- the possibility to expand into Taylor series -- is not physically meaningful on the micro level. Many physicists prefer physical theories with physically meaningful mathematical foundations. So, a natural question is: can we preserve physically meaningful "macro" analyticity without requiring physically meaningless "micro" analyticity? In the 1970s, an attempt to do it was made by using constructive mathematics, in which only objects generated by algorithms are …


Quantitatively Ranking Incorrect Responses To Multiple-Choice Questions Using Item Response Theory, Trevor Smith, Kyle J. Louis, Bartholemew J. Ricci Iv, Nasrine Bendjilali Jan 2020

Quantitatively Ranking Incorrect Responses To Multiple-Choice Questions Using Item Response Theory, Trevor Smith, Kyle J. Louis, Bartholemew J. Ricci Iv, Nasrine Bendjilali

Faculty Scholarship for the College of Science & Mathematics

Research-based assessment instruments (RBAIs) are ubiquitous throughout both physics instruction and physics education research. The vast majority of analyses involving student responses to RBAI questions have focused on whether or not a student selects correct answers and using correctness to measure growth. This approach often undervalues the rich information that may be obtained by examining students’ particular choices of incorrect answers. In the present study, we aim to reveal some of this valuable information by quantitatively determining the relative correctness of various incorrect responses. To accomplish this, we propose an assumption that allows us to define relative correctness: students who …


Analytic Threads - Annual Newsletters 2014-2020, Messiah University Jan 2020

Analytic Threads - Annual Newsletters 2014-2020, Messiah University

Educator Scholarship & Departmental Newsletters

Faculty and student updates. Analytic Threads is the annual newsletter of the Department of Computing, Mathematics and Physics at Messiah University. It is sent annually to alumni and is also available electronically at the website messiah.edu/cmp


Swirling Fluid Flow In Flexible, Expandable Elastic Tubes: Variational Approach, Reductions And Integrability, Rossen Ivanov, Vakhtang Putkaradze Jan 2020

Swirling Fluid Flow In Flexible, Expandable Elastic Tubes: Variational Approach, Reductions And Integrability, Rossen Ivanov, Vakhtang Putkaradze

Articles

Many engineering and physiological applications deal with situations when a fluid is moving in flexible tubes with elastic walls. In real-life applications like blood flow, a swirl in the fluid often plays an important role, presenting an additional complexity not described by previous theoretical models. We present a theory for the dynamics of the interaction between elastic tubes and swirling fluid flow. The equations are derived using a variational principle, with the incompressibility constraint of the fluid giving rise to a pressure-like term. In order to connect this work with the previous literature, we consider the case of inextensible and …


On The Intermediate Long Wave Propagation For Internal Waves In The Presence Of Currents, Joseph Cullen, Rossen Ivanov Jan 2020

On The Intermediate Long Wave Propagation For Internal Waves In The Presence Of Currents, Joseph Cullen, Rossen Ivanov

Articles

A model for the wave motion of an internal wave in the presence of current in the case of intermediate long wave approximation is studied. The lower layer is considerably deeper, with a higher density than the upper layer. The flat surface approximation is assumed. The fluids are incompressible and inviscid. The model equations are obtained from the Hamiltonian formulation of the dynamics in the presence of a depth-varying current. It is shown that an appropriate scaling leads to the integrable Intermediate Long Wave Equation (ILWE). Two limits of the ILWE leading to the integrable Benjamin-Ono and KdV equations are …


Remark On Lehnert’S Revised Quantum Electrodynamics (Rqed) As An Alternative To Francesco Celani’S Et Al. Maxwell-Clifford Equations: With An Outline Of Chiral Cosmology Model And Its Role To Cmns, Florentin Smarandache, Victor Christianto, Yunita Umniyati Jan 2020

Remark On Lehnert’S Revised Quantum Electrodynamics (Rqed) As An Alternative To Francesco Celani’S Et Al. Maxwell-Clifford Equations: With An Outline Of Chiral Cosmology Model And Its Role To Cmns, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

In a recent paper published in JCMNS in 2017, Francesco Celani, Di Tommaso & Vassalo argued that Maxwell equations rewritten in Clifford algebra are sufficient to describe the electron and also ultra-dense deuterium reaction process proposed by Homlid et al. Apparently, Celani et al. believed that their Maxwell-Clifford equations are an excellent candidate to surpass both Classical Electromagnetic and Zitterbewegung QM. Meanwhile, in a series of papers, Bo Lehnert proposed a novel and revised version of Quantum Electrodynamics (RQED) based on Proca equations. Therefore, in this paper, we gave an outline of Lehnert’s RQED, as an alternative framework to Celani …


Quadruple Neutrosophic Theory And Applications Volume I, Florentin Smarandache, Memet Şahin, Vakkas Uluçay, Abdullah Kargin Jan 2020

Quadruple Neutrosophic Theory And Applications Volume I, Florentin Smarandache, Memet Şahin, Vakkas Uluçay, Abdullah Kargin

Branch Mathematics and Statistics Faculty and Staff Publications

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory firstly proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs introducing neutrosophic sets and its applications, …


Three Possible Applications Of Neutrosophic Logic In Fundamental And Applied Sciences, Victor Christianto, Robert Neil Boyd, Florentin Smarandache Jan 2020

Three Possible Applications Of Neutrosophic Logic In Fundamental And Applied Sciences, Victor Christianto, Robert Neil Boyd, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the variations surround three parameters called T,I,F (truth, indeterminacy, falsehood) which can take a range of values. This paper shortly reviews the links among aether and matter creation from the perspective of Neutrosophic Logic. Once we accept the existence of aether as physical medium, then we can start to ask on what causes matter ejection, as observed in various findings related to quasars etc. One particular cosmology model known as VMH (variable mass hypothesis) has been suggested by notable astrophysicists like Halton …


A Short Remark On Vortex As Fluid Particle From Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache Jan 2020

A Short Remark On Vortex As Fluid Particle From Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In a previous paper in this journal (IJNS), it is mentioned about a possible approach to re-describe QED without renormalization route. As it is known that in literature, there are some attempts to reconcile vortex-based fluid dynamics and particle dynamics. Some attempts are not quite as fruitful as others. As a follow up to previous paper, the present paper will discuss two theorems for developing unification theories, and then point out some new proposals including by Simula (2020) on how to derive Maxwell equations in superfluid dynamics setting; this could be a new alternative approach towards “fluidicle” or “vorticle” model …


A Review On Superluminal Physics And Superluminal Communication In Light Of The Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache Jan 2020

A Review On Superluminal Physics And Superluminal Communication In Light Of The Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In a recent paper, we describe a model of quantum communication based on combining consciousness experiment and entanglement, which can serve as impetus to stop 5G-network-caused diseases. Therefore, in this paper we consider superluminal physics and superluminal communication as a bridge or intermediate way between subluminal physics and action-at-a-distance (AAAD) physics, especially from neutrosophic logic perspective. Although several ways have been proposed to bring such a superluminal communication into reality, such as Telluric wave or Telepathy analog of Horejev and Baburin, here we also review two possibilities: quaternion communication and also quantum communication based on quantum noise. Further research is …