Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Materials Science and Engineering

2011

Articles 1 - 18 of 18

Full-Text Articles in Physics

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff Nov 2011

Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff

Physics - All Scholarship

We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on the statistical distribution of energy in the electromagnetic modes of the structure, which include surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the film. The enhancement has the form 4n2+/h (n – film refractive index, λ – optical wavelength, h …


Creating A Uniform Magnetic Field For The Equi-Biaxial Physical Testing Of Magnetorheological Elastomers; Electromagnet Design, Development And Testing., Dave Gorman, Stephen Jerrams, Ray Ekins, Niall Murphy Sep 2011

Creating A Uniform Magnetic Field For The Equi-Biaxial Physical Testing Of Magnetorheological Elastomers; Electromagnet Design, Development And Testing., Dave Gorman, Stephen Jerrams, Ray Ekins, Niall Murphy

Conference Papers

No abstract provided.


Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla Aug 2011

Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla

Shireen Adenwalla Papers

We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and …


Behavior Of Na+-Polystyrene Sulfonate At The Interface With Single-Walled Carbon Nanotubes (Swnts) And Its Implication To Swnt Suspension Stability, Tabbetha A. Dobbins, Richard Chevious, Yuri Lvov Jun 2011

Behavior Of Na+-Polystyrene Sulfonate At The Interface With Single-Walled Carbon Nanotubes (Swnts) And Its Implication To Swnt Suspension Stability, Tabbetha A. Dobbins, Richard Chevious, Yuri Lvov

Faculty Scholarship for the College of Science & Mathematics

The assembly of sodium polystyrene sulfonate (Na+-PSS) at the surface of single-walled carbon nanotubes (SWNTs) in pH 3 aqueous solution is described. Rather than forming linear or sheet-like chain morphologies over SWNT surfaces, Na+-PSS adopts a spherically collapsed conformation believed to be the result of cation (either Na+ or H+) condensation onto the ionized polymer chain. It is well reported that cations (and also anions) adsorb preferentially onto single-walled and multi-walled carbon nanotube surfaces leading to an increased ion concentration in the near surface regions relative to the bulk solution. This work provides experimental evidence for preferentially absorbed cation condensation …


Ir Nonlinear Absorption Leading To Laser-Induced Damage In Ge & Gasb, Torrey J. Wagner, Matthew J. Bohn, Ronald A. Coutu Jr., L. P. Gonzales, J. M. Murray, K. L. Schepler, S. Guha Jun 2011

Ir Nonlinear Absorption Leading To Laser-Induced Damage In Ge & Gasb, Torrey J. Wagner, Matthew J. Bohn, Ronald A. Coutu Jr., L. P. Gonzales, J. M. Murray, K. L. Schepler, S. Guha

Faculty Publications

Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 μm for the first time. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5 μm and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for ps or ns pulses, respectively. Wavelength-dependant …


Complementary Metal-Oxide Semiconductor-Compatible Detector Materials With Enhanced 1550 Nm Responsivity Via Sn-Doping Of Ge/Si(100), Richard T. Beeler, Jay Mathews, Mee-Yi Ryu, Yung-Kee Yeo, Jose Menendez, John Kouvetakis May 2011

Complementary Metal-Oxide Semiconductor-Compatible Detector Materials With Enhanced 1550 Nm Responsivity Via Sn-Doping Of Ge/Si(100), Richard T. Beeler, Jay Mathews, Mee-Yi Ryu, Yung-Kee Yeo, Jose Menendez, John Kouvetakis

Faculty Publications

Previously developed methods used to grow Ge1−ySny alloys on Si are extended to Sn concentrations in the 1019−1020 cm−3 range. These concentrations are shown to be sufficient to engineer large increases in the responsivity of detectors operating at 1550 nm. The dopant levels of Sn are incorporated at temperatures in the 370–390 °C range, yielding atomically smooth layers devoid of threading defects at high growth rates of 15–30 nm/min. These conditions are far more compatible with complementary metal-oxide semiconductor processing than the high growth and processing temperatures required to achieve the same …


Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac Mar 2011

Analysis Of Interband, Intraband, And Plasmon Polariton Transitions In Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry, S. A. Little, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

The dielectric function of Ag nanoparticle films, deduced from an analysis of in situ real-time spectroscopic ellipsometry (RTSE) measurements, is found to evolve with time during deposition in close consistency with the film structure, deduced in the same RTSE analysis. In the nucleation regime, the intraband dielectric function component is absent and plasmon polariton behavior dominates. Only at nuclei contact, does the intraband amplitude appear, increasing above zero. Both intraband and plasmon amplitudes coexist during surface smoothening associated with coalescence. The intraband relaxation time increases rapidly after surface smoothening is complete, also in consistency with the thin film structural evolution.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Scanning Capacitance Spectroscopy On N+-P Asymmetrical Junctions In Multicrystalline Si Solar Cells, Chun-Sheng Jiang, Jennifer T. Heath, Helio R. Moutinho, Mowafak M. Al-Jassim Jan 2011

Scanning Capacitance Spectroscopy On N+-P Asymmetrical Junctions In Multicrystalline Si Solar Cells, Chun-Sheng Jiang, Jennifer T. Heath, Helio R. Moutinho, Mowafak M. Al-Jassim

Faculty Publications

We report on a scanning capacitance spectroscopy (SCS) study on the n+-p junction of multicrystalline silicon solar cells. We found that the spectra taken at space intervals of ∼10 nm exhibit characteristic features that depend strongly on the location relative to the junction. The capacitance-voltage spectra exhibit a local minimum capacitance value at the electrical junction, which allows the junction to be identified with ∼10-nm resolution. The spectra also show complicated transitions from the junction to the n-region with two local capacitance minima on the capacitance-voltage curves; similar spectra to that have not been previously reported in …


Observations On Braided Thin Wire Nucleate Boiling In Microgravity, Justin P. Koeln, Jeffrey C. Boulware, Heng Ban, Jr Dennison Jan 2011

Observations On Braided Thin Wire Nucleate Boiling In Microgravity, Justin P. Koeln, Jeffrey C. Boulware, Heng Ban, Jr Dennison

Publications

A microgravity experiment was conducted on the Space Shuttle Endeavor (STS-108) to observe sustained nucleate boiling of water. Subcooled water was boiled with a single strand and a braid of three 0.16. mm diameter and 80. mm long Nichrome resistive wires. A CCD video camera recorded the experiment while six thermistors recorded the temperature of the fluid at various distances from the heating element. This paper reports experimental results in observations, measurements, and data analysis. Bubble explosions were found to take place shortly after the onset of boiling for both the single and braid of wires. The explosion may produce …


Density Functional Theory Study On The Electronic Structure Of N- And P-Type Doped Srtio3 At Anodic Solid Oxide Fuel Cell Conditions, S. Suthirakun, Salai Cheettu Ammal, G. Xiao, Fanglin Chen, Hans-Conrad Zur Loye, Andreas Heyden Jan 2011

Density Functional Theory Study On The Electronic Structure Of N- And P-Type Doped Srtio3 At Anodic Solid Oxide Fuel Cell Conditions, S. Suthirakun, Salai Cheettu Ammal, G. Xiao, Fanglin Chen, Hans-Conrad Zur Loye, Andreas Heyden

Faculty Publications

The electronic conductivity and thermodynamic stability of mixed n-type and p-type doped SrTiO3 have been investigated at anodic solid oxide fuel cell (SOFC) conditions using density functional theory (DFT) calculations. In particular, constrained ab initio thermodynamic calculations have been performed to evaluate the phase stability and reducibility of various Nb- and Ga-doped SrTiO3 at synthesized and anodic SOFC conditions. The density of states (DOS) of these materials was analyzed to study the effects of n- and p-doping on the electronic conductivity. In agreement with experimental observations, we find that the transformation from 20% Nb-doped Sr-deficient SrTiO3 to a non-Sr-deficient phase …


Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2011

Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on surface diffusion during the growth of Ge on Si(100) at 250 °C was studied. In situ reflection high-energy electron diffraction was used to measure the surface diffusion coefficient while ex situ atomic force microscopy was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during the growth of Ge on Si(100), changes the growth morphology, improves the crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface …


Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali Jan 2011

Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Low temperature epitaxy of Ge quantum dots on Si (100) - (2×1) by femtosecond pulsed laser deposition under femtosecond laser excitation was investigated. Reflection high-energy electron diffraction and atomic force microscopy were used to analyze the growth mode and morphology. Epitaxial growth was achieved at ∼70 °C by using femtosecond laser excitation of the substrate. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3537813]


Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller Jan 2011

Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller

Electrical & Computer Engineering Faculty Publications

Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials …


Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali Jan 2011

Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The structural properties of bismuth nanoclusters were investigated with transmission high-energy electron diffraction from room temperature up to 525 ± 6 K. The Bi nanoclusters were fabricated by thermal evaporation at room temperature on transmission electron microscope grids coated with an ultrathin carbon film, followed by thermal and femtosecond laser annealing. The annealed sample had an average cluster size of ∼14 nm along the minor axis and ∼16 nm along the major axis. The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K along the [012] direction and 86 ± 9 K along the [110] …