Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner Jun 2021

Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner

Publications and Research

Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome …


Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore Dec 2020

Understanding Of Aerosol Transmission Of Covid 19 In Indoor Environments, Adama Barro, Cathal O'Toole, Jacob S. Lopez, Matthew Quinones, Sherene Moore

Publications and Research

Our reason for discussing severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) or 2019 novel corona virus (Covid-19), is to understand its aerosol transmission characteristics in indoor spaces and to mitigate further spread of this disease by designing a new HVAC system. The problem that we are tackling is the spread of covid-19 droplets through aerosol transmission by looking at potential engineering solutions to the existing HVAC systems. The purpose is to eradicate the spread of the COVID-19 by testing indoor spaces in an effort to understand the effectiveness of ventilation controls. We believe that scientists and engineers have not …


Evolutionary Algorithms Converge Towards Evolved Biological Photonic Structures, Mamadou Aliou Barry, Vincent Berthier, Bobo D. Wilts, Marie-Claire Cambourieux, Pauline Bennet, Rémi Pollès, Olivier Teytaud, Emmanuel Centeno, Nicolas Biais, Antoine Moreau Jul 2020

Evolutionary Algorithms Converge Towards Evolved Biological Photonic Structures, Mamadou Aliou Barry, Vincent Berthier, Bobo D. Wilts, Marie-Claire Cambourieux, Pauline Bennet, Rémi Pollès, Olivier Teytaud, Emmanuel Centeno, Nicolas Biais, Antoine Moreau

Publications and Research

Nature features a plethora of extraordinary photonic architectures that have been optimized through natural evolution in order to more efciently refect, absorb or scatter light. While numerical optimization is increasingly and successfully used in photonics, it has yet to replicate any of these complex naturally occurring structures. Using evolutionary algorithms inspired by natural evolution and performing particular optimizations (maximize refection for a given wavelength, for a broad range of wavelength or maximize the scattering of light), we have retrieved the most stereotypical natural photonic structures. Whether those structures are Bragg mirrors, chirped dielectric mirrors or the gratings on top of …


Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse Jun 2020

Circuits With Broken Fibration Symmetries Perform Core Logic Computations In Biological Networks, Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, Hernán A. Makse

Publications and Research

We show that logic computational circuits in gene regulatory networks arise from a fibration symmetry breaking in the network structure. From this idea we implement a constructive procedure that reveals a hierarchy of genetic circuits, ubiquitous across species, that are surprising analogues to the emblematic circuits of solid-state electronics: starting from the transistor and progressing to ring oscillators, current-mirror circuits to toggle switches and flip-flops. These canonical variants serve fundamental operations of synchronization and clocks (in their symmetric states) and memory storage (in their broken symmetry states). These conclusions introduce a theoretically principled strategy to search for computational building blocks …


Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse Mar 2020

Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse

Publications and Research

A major ambition of systems science is to uncover the building blocks of any biological network to decipher how cellular function emerges from their interactions. Here, we introduce a graph representation of the information flow in these networks as a set of input trees, one for each node, which contains all pathways along which information can be transmitted in the network. In this representation, we find remarkable symmetries in the input trees that deconstruct the network into functional building blocks called fibers. Nodes in a fiber have isomorphic input trees and thus process equivalent dynamics and synchronize their activity. Each …


Nanostructured Fibers As A Versatile Photonic Platform: Radiative Cooling And Waveguiding Through Transverse Anderson Localization, Norman Nan Shi, Cheng-Chia Tsai, Michael J. Carter, Jyotirmoy Mandal, Adam C. Overvig, Matthew Y. Sfeir, Ming Lu, Catherine L. Craig, Gary D. Bernard, Yuan Yang, Nanfang Yu Jul 2018

Nanostructured Fibers As A Versatile Photonic Platform: Radiative Cooling And Waveguiding Through Transverse Anderson Localization, Norman Nan Shi, Cheng-Chia Tsai, Michael J. Carter, Jyotirmoy Mandal, Adam C. Overvig, Matthew Y. Sfeir, Ming Lu, Catherine L. Craig, Gary D. Bernard, Yuan Yang, Nanfang Yu

Publications and Research

Broadband high reflectance in nature is often the result of randomly, three-dimensionally structured materials. This study explores unique optical properties associated with one-dimensional nanostructures discovered in silk cocoon fibers of the comet moth, Argema mittrei. The fibers are populated with a high density of air voids randomly distributed across the fiber cross-section but are invariant along the fiber. These filamentary air voids strongly scatter light in the solar spectrum. A single silk fiber measuring ~50 μm thick can reflect 66% of incoming solar radiation, and this, together with the fibers' high emissivity of 0.88 in the mid-infrared range, allows …


Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian Jan 2017

Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian

Publications and Research

Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching …


An Evolutionary Vaccination Game In The Modified Activity Driven Network By Considering The Closeness, Dun Han, Mei Sun Sep 2015

An Evolutionary Vaccination Game In The Modified Activity Driven Network By Considering The Closeness, Dun Han, Mei Sun

Publications and Research

In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ/μ. However, when vaccination is allowed the final density of recovered individual first increases and …


A Principle Of Economy Predicts The Functional Architecture Of Grid Cells, Xue-Xin Wei, Jason Prentice, Vijay Balasubramanian Jan 2015

A Principle Of Economy Predicts The Functional Architecture Of Grid Cells, Xue-Xin Wei, Jason Prentice, Vijay Balasubramanian

Publications and Research

Grid cells in the brain respond when an animal occupies a periodic lattice of ‘grid fields’ during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 …