Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Analyzing The Spectral Energy Cascade In Turbulent Channel Flow, João Rodrigo Andrade, Ramon Silva Martins, Gilmar Mompean, Laurent Thais, Thomas B. Gatski Jan 2018

Analyzing The Spectral Energy Cascade In Turbulent Channel Flow, João Rodrigo Andrade, Ramon Silva Martins, Gilmar Mompean, Laurent Thais, Thomas B. Gatski

CCPO Publications

An analysis of the spectral turbulent kinetic energy budget in a fully developed turbulent plane channel flow is performed. Direct numerical simulation data are evaluated at friction Reynolds numbers Reτ of 180 and 1000. The analysis is focused on the influence of the Reynolds number on the spectral cascade of energy and the corresponding energy cascade in physical space in the presence of inhomogeneity and anisotropy. The turbulent kinetic energy distribution is compared for both Reynolds numbers, and the relevant characteristics of the energy transfer process in a wall-bounded turbulent flow are described. Differences in energy cascade are noted …


Advances In The Analysis And Prediction Of Turbulent Viscoelastic Flows, T. B. Gatski, L. Thais, G. Mompean Jan 2014

Advances In The Analysis And Prediction Of Turbulent Viscoelastic Flows, T. B. Gatski, L. Thais, G. Mompean

CCPO Publications

It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain …


Quantifying Vertical Mixing In Estuaries, W. Rockwell Geyer, Malcolm E. Scully, David K. Ralston Jan 2008

Quantifying Vertical Mixing In Estuaries, W. Rockwell Geyer, Malcolm E. Scully, David K. Ralston

CCPO Publications

Estuarine turbulence is notable in that both the dissipation rate and the buoyancy frequency extend to much higher values than in other natural environments. The high dissipation rates lead to a distinct inertial subrange in the velocity and scalar spectra, which can be exploited for quantifying the turbulence quantities. However, high buoyancy frequencies lead to small Ozmidov scales, which require high sampling rates and small spatial aperture to resolve the turbulent fluxes. A set of observations in a highly stratified estuary demonstrate the effectiveness of a vessel-mounted turbulence array for resolving turbulent processes, and for relating the turbulence to the …


The Temporally Filtered Navier-Stokes Equations: Propertes Of The Residual Stress, C. D. Pruett, T. B. Gatski, Chester E. Grosch, W. D. Thacker Jan 2003

The Temporally Filtered Navier-Stokes Equations: Propertes Of The Residual Stress, C. D. Pruett, T. B. Gatski, Chester E. Grosch, W. D. Thacker

CCPO Publications

Recent interest in the development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, provides the motivation for the present paper. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. This includes the frame-invariance properties of the filtered equations and the resulting residual stress. Causal time-domain filters, parametrized by a temporal filter width 0infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the …


Growth Characteristics Downstream Of A Shallow Bump: Computation And Experiment, Ronald D. Joslin, Chester E. Grosch Jan 1995

Growth Characteristics Downstream Of A Shallow Bump: Computation And Experiment, Ronald D. Joslin, Chester E. Grosch

CCPO Publications

Measurements of the velocity field created by a shallow bump on a wall revealed that an energy peak in the spanwise spectrum associated with the driver decays and an initially small-amplitude secondary mode rapidly grows with distance downstream of the bump. Linear theories could not provide an explanation for this growing mode. The present Navier-Stokes simulation replicates and confirms the experimental results. Insight into the structure of the flow was obtained from a study of the results of the calculations and is presented.


A Criterion For Vortex Breakdown, R. E. Spall, T. B. Gatski, C. E. Grosch Dec 1986

A Criterion For Vortex Breakdown, R. E. Spall, T. B. Gatski, C. E. Grosch

CCPO Publications

A criterion for the onset of vortex breakdown over a wide range of the Reynolds number is proposed. Based upon previous experimental, theoretical, and numerical studies, as well as a new numerical study, an appropriately defined local Rossby number is used to delineate the region where breakdown occurs. Comparisons are made with previously suggested criticality parameters and the unique features of the proposed Rossby number parameter are shown. A number of previous theoretical studies concentrating on inviscid standing‐wave analyses for trailing wing‐tip vortices are reviewed and reinterpreted, along with the previous numerical and experimental studies, in terms of the Rossby …