Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Engineering Physics

Mechanical & Aerospace Engineering Faculty Publications

Exponential dependence

Articles 1 - 1 of 1

Full-Text Articles in Physics

Studies Of Breakdown In A Pressurized Rf Cavity, M. Bastaninejad, A. A. Elmustafa, C. M. Ankenbrandt, A. Moretti, M. Popovic, K. Yonehara, D. M. Kaplan, M. Alsharo'a, P. M. Hanlet, R. P. Johnson, M. Kuchnir, D. Newsham, D. V. Rose, C. Thoma, D. R. Welch Jan 2008

Studies Of Breakdown In A Pressurized Rf Cavity, M. Bastaninejad, A. A. Elmustafa, C. M. Ankenbrandt, A. Moretti, M. Popovic, K. Yonehara, D. M. Kaplan, M. Alsharo'a, P. M. Hanlet, R. P. Johnson, M. Kuchnir, D. Newsham, D. V. Rose, C. Thoma, D. R. Welch

Mechanical & Aerospace Engineering Faculty Publications

Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 805 MHz RF cavity experiments [1] have been used to investigate the mechanism of RF breakdown [2]. The images show evidence for melting and boiling in small regions of ∼10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces …