Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Reducing Leakage Current And Enhancing Polarization In Multiferroic 3d Supernanocomposites By Microstructure Engineering, Erik Enriquez, Ping Lu, Leigang Li, Bruce Zhang, Haiyan Wang, Quanxi Jia, Aiping Chen Jul 2022

Reducing Leakage Current And Enhancing Polarization In Multiferroic 3d Supernanocomposites By Microstructure Engineering, Erik Enriquez, Ping Lu, Leigang Li, Bruce Zhang, Haiyan Wang, Quanxi Jia, Aiping Chen

Computer Science Faculty Publications and Presentations

Multiferroic materials have generated great interest due to their potential as functional device materials. Nanocomposites have been increasingly used to design and generate new functionalities by pairing dissimilar ferroic materials, though the combination often introduces new complexity and challenges unforeseeable in single-phase counterparts. The recently developed approaches to fabricate 3D super-nanocomposites (3D‐sNC) open new avenues to control and enhance functional properties. In this work, we develop a new 3D‐sNC with CoFe2O4 (CFO) short nanopillar arrays embedded in BaTiO3 (BTO) film matrix via microstructure engineering by alternatively depositing BTO:CFO vertically-aligned nanocomposite layers and single-phase BTO layers. This microstructure engineering method allows …


Defect-Free Plastic Deformation Through Dimensionality Reduction And Self-Annihilation Of Topological Defects In Crystalline Solids, Yipeng Gao, Yongfeng Zhang, Larry K. Aagesen, Jianguo Yu, Min Long, Yunzhi Wang Feb 2020

Defect-Free Plastic Deformation Through Dimensionality Reduction And Self-Annihilation Of Topological Defects In Crystalline Solids, Yipeng Gao, Yongfeng Zhang, Larry K. Aagesen, Jianguo Yu, Min Long, Yunzhi Wang

Computer Science Faculty Publications and Presentations

As a signature of symmetry-breaking processes, the generation and annihilation of topological defects (domain walls, strings, etc.) are of great interest in condensed matter physics and cosmology. Here we propose a distinctive self-organization process through phase transitions, in which all the generated topological defects are dimensionality reduced and self-annihilated. In crystalline solids, such a unique mechanism allows a perfect single crystal after plastic deformation, which originates from the coupling of different types of broken symmetries.