Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Chemical Engineering

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 94

Full-Text Articles in Physics

Adsorption Of Crystal Violet Dye From Synthetic Wastewater By Ball-Milled Royal Palm Leaf Sheath, Neloy Sen, Nawrin Rahman Shefa, Kismot Reza, Sk Md Ali Zaker Shawon, Md. Wasikur Rahman Mar 2024

Adsorption Of Crystal Violet Dye From Synthetic Wastewater By Ball-Milled Royal Palm Leaf Sheath, Neloy Sen, Nawrin Rahman Shefa, Kismot Reza, Sk Md Ali Zaker Shawon, Md. Wasikur Rahman

Physics and Astronomy Faculty Publications and Presentations

The current study shows that using a batch approach to remove crystal violet dye from synthetic wastewater is feasible when using royal palm leaf sheath powder as an adsorbent. In order to investigate the effects of many parameters, including starting concentration, pH effect, dye concentration, adsorbent dose, contact time, and temperature, experiments were carried out under various operating conditions. Maximum removal was obtained at pH 6 and at a concentration of 100 ppm, which are considered as ideal values. The influence of pH and dye concentration was shown to be substantial. Langmuir, Freundlich, and Temkin isotherm models were fitted to …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


More On The Demons Of Thermodynamics, Daniel P. Sheehan, Garret Moddel, James W. Lee Jan 2023

More On The Demons Of Thermodynamics, Daniel P. Sheehan, Garret Moddel, James W. Lee

Chemistry & Biochemistry Faculty Publications

No abstract provided.


Serpentine Micromixers Using Extensional Mixing Elements, George Tomaras, Chandrasekhar R. Kothapalli, Petru S. Fodor Oct 2022

Serpentine Micromixers Using Extensional Mixing Elements, George Tomaras, Chandrasekhar R. Kothapalli, Petru S. Fodor

Physics Faculty Publications

Computational fluid dynamics modeling was used to characterize the effect of the integration of constrictions defined by the vertices of hyperbolas on the flow structure in microfluidic serpentine channels. In the new topology, the Dean flows characteristic of the pressure-driven fluid motion along curved channels are combined with elongational flows and asymmetric longitudinal eddies that develop in the constriction region. The resulting complex flow structure is characterized by folding and stretching of the fluid volumes, which can promote enhanced mixing. Optimization of the geometrical parameters defining the constriction region allows for the development of an efficient micromixer topology that shows …


Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian Apr 2022

Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian

Articles

Mycotoxins are secondary metabolic products of fungi. They are poisonous, carcinogenic, and mutagenic in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even death. Rapid, simple and low-cost methods of detection of mycotoxins are of immense importance and in great demand in the food and beverage industry, as well as in agriculture and environmental monitoring, and, for this purpose, lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety and environmental monitoring. The literature to date describing the development of ICSTs for the detection of different types of mycotoxins using …


A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath Jan 2022

A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

We report and interpret recently recorded high-resolution infrared spectra for the fundamentals of the CH2 scissors and CH stretches of gas phase cyclopentane at −26.1 and −50 C, respectively. We extend previous theoretical studies of this molecule, which is known to undergo barrierless pseudorotation due to ring puckering, by constructing local mode Hamiltonians of the stretching and scissor vibrations for which the frequencies, couplings, and linear dipoles are calculated as functions of the pseudorotation angle using B3LYP/6-311++(d,p) and MP2/cc-pVTZ levels of theory. Symmetrization (D5h) of the vibrational basis sets leads to simple vibration/pseudorotation Hamiltonians whose solutions …


Raman Investigations Of The Radiation-Induced Modifications In Ipp-Vgcnf Nanocomposites: The Nanofillers’ Tale, Dorina M. Chipara, Mihail Secu, Karen Lozano, Corina Secu, Mircea Chipara Oct 2021

Raman Investigations Of The Radiation-Induced Modifications In Ipp-Vgcnf Nanocomposites: The Nanofillers’ Tale, Dorina M. Chipara, Mihail Secu, Karen Lozano, Corina Secu, Mircea Chipara

Physics and Astronomy Faculty Publications and Presentations

Nanocomposites of isotactic polypropylene loaded by various amounts of vapor-grown carbon nanotubes ranging from 0 to 20% wt. were obtained by extrusion. Raman investigations on these nanocomposites are reported. The nanocomposites were irradiated using a 60Co, with an integral dose of 1 kGy/h up to integral doses of 9 kGy, 18 kGy, and 27 kGy, in air, at room temperature. Raman measurements were performed by using a Bruker Senterra confocal Raman spectrometer operating at 785 nm. The research is focused on the information contained within the D and G Raman lines of these nanocomposites as a function of nanotube loading …


Alternative View Of Oxygen Reduction On Porous Carbon Electrocatalysts: The Substance Of Complex Oxygen-Surface Interactions, Giacomo De Falco, Marc Florent, Jacek Jagiello, Yongqiang Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Teresa J. Bandosz Mar 2021

Alternative View Of Oxygen Reduction On Porous Carbon Electrocatalysts: The Substance Of Complex Oxygen-Surface Interactions, Giacomo De Falco, Marc Florent, Jacek Jagiello, Yongqiang Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Teresa J. Bandosz

Publications and Research

Electrochemical oxygen reduction reaction (ORR) is an important energy-related process requiring alternative catalysts to expensive platinum-based ones. Although recently some advancements in carbon catalysts have been reported, there is still a lack of understanding which surface features might enhance their efficiency for ORR. Through a detailed study of oxygen adsorption on carbon molecular sieves and using inelastic neutron scattering, we demonstrated here that the extent of oxygen adsorption/interactions with surface is an important parameter affecting ORR. It was found that both the strength of O2 physical adsorption in small pores and its specific interactions with surface ether functionalities in the …


Advanced Raman Spectroscopy Detection Of Oxidative Damage In Nucleic Acid Bases: Probing Chemical Changes And Intermolecular Interactions In Guanosine At Ultralow Concentration, Francesca Ripanti, Claudia Fasolato, Flavia Mazzarda, Simonetta Palleschi, Marina Ceccarini, Chunchun Li, Margherita Bignami, Enrico Bodo, Steven E.J. Bell, Filomena Mazzei, Paolo Postorino Jan 2021

Advanced Raman Spectroscopy Detection Of Oxidative Damage In Nucleic Acid Bases: Probing Chemical Changes And Intermolecular Interactions In Guanosine At Ultralow Concentration, Francesca Ripanti, Claudia Fasolato, Flavia Mazzarda, Simonetta Palleschi, Marina Ceccarini, Chunchun Li, Margherita Bignami, Enrico Bodo, Steven E.J. Bell, Filomena Mazzei, Paolo Postorino

Bioelectrics Publications

DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with ab initio calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration. We also show that the Raman signature in the terahertz spectral range (<100 >cm(-1)) contains information on the intermolecular assembly of guanine in tetrads, which allows us to further boost the oxidative damage detection limit. Eventually, we …


Semi-Lagrangian Implicit Bhatnagar-Gross-Krook Collision Model For The Finite-Volume Discrete Boltzmann Method, Leitao Chen, Sauro Succi, Xiaofeng Cai, Laura Schaefer Jun 2020

Semi-Lagrangian Implicit Bhatnagar-Gross-Krook Collision Model For The Finite-Volume Discrete Boltzmann Method, Leitao Chen, Sauro Succi, Xiaofeng Cai, Laura Schaefer

Publications

In order to increase the accuracy of temporal solutions, reduce the computational cost of time marching, and improve the stability associated with collisions for the finite-volume discrete Boltzmann method, an advanced implicit Bhatnagar-Gross-Krook (BGK) collision model using a semi-Lagrangian approach is proposed in this paper. Unlike existing models, in which the implicit BGK collision is resolved either by a temporal extrapolation or by a variable transformation, the proposed model removes the implicitness by tracing the particle distribution functions (PDFs) back in time along their characteristic paths during the collision process. An interpolation scheme is needed to evaluate the PDFs at …


Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli Mar 2020

Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli

Publications and Research

In electrocoalescence, an electric field is applied to a dispersion of conducting water droplets in a poorly conducting oil to force the droplets to merge in the direction of the field. Electrocoalescence is used in petroleum refining to separate water from crude oil and in droplet-based microfluidics to combine droplets of water in oil and to break emulsions. Using a microfluidic design to generate a two-dimensional (2D) emulsion, we demonstrate that electrocoalescence in an opaque crude oil can be visualized with optical microscopy and studied on an individual droplet basis in a chamber whose height is small enough to make …


Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler Jan 2020

Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler

Electrical & Systems Engineering Publications and Presentations

Defect engineering is a strategy that has been widely used to design active semiconductor photocatalysts. However, understanding the role of defects, such as oxygen vacancies, in controlling photocatalytic activity remains a challenge. Here, we report the use of chemically triggered fluorogenic probes to study the spatial distribution of active regions in individual tungsten oxide nanowires using super-resolution fluorescence microscopy. The nanowires show significant heterogeneity along their lengths for the photocatalytic generation of hydroxyl radicals. Through quantitative, coordinate-based colocalization of multiple probe molecules activated by the same nanowires, we demonstrate that the nanoscale regions most active for the photocatalytic generation of …


Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren Oct 2018

Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

Modeling works which simulate the proton-exchange membrane fuel cell with the computational fluid dynamics approach involve the simultaneous solution of multiple, interconnected physics equations for fluid flows, heat transport, electrochemical reactions, and both protonic and electronic conduction. Modeling efforts vary by how they treat the physics within and adjacent to the membrane-electrode assembly (MEA). Certain approaches treat the MEA not as part of the computational domain, but rather an interface connecting the anode and cathode computational domains. These approaches may lack the ability to consistently model catalyst layer losses and MEA ohmic resistance. This work presents an upgraded interface formulation …


Arrhenius Rate Chemistry-Informed Inter-Phase Source Terms (Arciist), Matthew J. Schwaab, Robert B. Greendyke, Bryan J. Steward Jul 2018

Arrhenius Rate Chemistry-Informed Inter-Phase Source Terms (Arciist), Matthew J. Schwaab, Robert B. Greendyke, Bryan J. Steward

Faculty Publications

Currently, in macro-scale hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these burn rate models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of Arrhenius Rate Chemistry-Informed Interphase Source Terms (ARCIIST) in place of empirically derived burn models will improve the accuracy for these computational codes. A reacting chemistry model of this form was developed for the cyclic …


Analyzing The Spectral Energy Cascade In Turbulent Channel Flow, João Rodrigo Andrade, Ramon Silva Martins, Gilmar Mompean, Laurent Thais, Thomas B. Gatski Jan 2018

Analyzing The Spectral Energy Cascade In Turbulent Channel Flow, João Rodrigo Andrade, Ramon Silva Martins, Gilmar Mompean, Laurent Thais, Thomas B. Gatski

CCPO Publications

An analysis of the spectral turbulent kinetic energy budget in a fully developed turbulent plane channel flow is performed. Direct numerical simulation data are evaluated at friction Reynolds numbers Reτ of 180 and 1000. The analysis is focused on the influence of the Reynolds number on the spectral cascade of energy and the corresponding energy cascade in physical space in the presence of inhomogeneity and anisotropy. The turbulent kinetic energy distribution is compared for both Reynolds numbers, and the relevant characteristics of the energy transfer process in a wall-bounded turbulent flow are described. Differences in energy cascade are noted …


Graphene Nanoplatelets-Sericin Surface-Modified Gum Alloy For Improved Biological Response, Valentina Mitran, Valentina Dinca, Raluca Ion, Vasile D. Cojocaru, Patricia Neacsu, Cerasela Zoica Dinu, Laurentiu Rusen, Simona Brajnicov, Anca Bonciu, Maria Dinescu, Doina Raducanu, Ioan Dan Jan 2018

Graphene Nanoplatelets-Sericin Surface-Modified Gum Alloy For Improved Biological Response, Valentina Mitran, Valentina Dinca, Raluca Ion, Vasile D. Cojocaru, Patricia Neacsu, Cerasela Zoica Dinu, Laurentiu Rusen, Simona Brajnicov, Anca Bonciu, Maria Dinescu, Doina Raducanu, Ioan Dan

Faculty & Staff Scholarship

In this study a “Gum Metal” titanium-based alloy, Ti-31.7Nb-6.21Zr-1.4Fe-0.16O, was synthesized by melting and characterized in order to evaluate its potential for biomedical applications. The results showed that the newly developed alloy presents a very high strength, high plasticity and a low Young's modulus relative to titanium alloys currently used in medicine. For further bone implant applications, the newly synthesized alloy was surface modified with graphene nanoplatelets (GNP), sericin (SS) and graphene nanoplatelets/sericine (GNP–SS) composite films via Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The characterization of each specimen was monitored by scanning electron microscopy (SEM), atomic force microscopy (AFM), …


Single-Site Catalyst Promoters Accelerate Metal- Catalyzed Nitroarene Hydrogenation, Liang Wang, Erjia Guan, Jian Zhang, Junhao Yang, Yihan Zhu, Yu Han, Ming Yang, Cheng Cen, Gang Fu, Bruce C. Gates, Feng-Shou Xiao Jan 2018

Single-Site Catalyst Promoters Accelerate Metal- Catalyzed Nitroarene Hydrogenation, Liang Wang, Erjia Guan, Jian Zhang, Junhao Yang, Yihan Zhu, Yu Han, Ming Yang, Cheng Cen, Gang Fu, Bruce C. Gates, Feng-Shou Xiao

Faculty & Staff Scholarship

Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydro- genation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn- TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various …


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts as a …


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway Oct 2017

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides …


Synthesis, Characterization, And Properties Of Graphene-Based Hybrids With Cobalt Oxides For Electrochemical Energy Storage And Electrocatalytic Glucose Sensing, Sara C. Botero Carrizosa Apr 2017

Synthesis, Characterization, And Properties Of Graphene-Based Hybrids With Cobalt Oxides For Electrochemical Energy Storage And Electrocatalytic Glucose Sensing, Sara C. Botero Carrizosa

Masters Theses & Specialist Projects

A library of graphene-based hybrid materials was synthesized as novel hybrid electrochemical electrodes for electrochemical energy conversion and storage devices and electrocatalytical sensing namely enzymeless glucose sensing. The materials used were supercapacitive graphene-family nanomaterials (multilayer graphene-MLG; graphene oxide-GO, chemically reduced GO-rGO and electrochemical reduced GOErGO) and pseudocapacitive nanostructured transition metal oxides including cobalt oxide polymorphs (CoO and Co3O4) and cobalt nanoparticles (CoNP). These were combined through physisorption, electrodeposition, and hydrothermal syntheses approaches. This project was carried out to enhance electrochemical performance and to develop electrocatalytic platforms by tailoring structural properties and desired interfaces. Particularly, electrodeposition and hydrothermal synthesis facilitate chemically-bridged …


Chemically Stable Artificial Sei For Li-Ion Battery Electrodes, Qinglin Zhang, Lei Han, Jie Pan, Zhi Chen, Yang-Tse Cheng Mar 2017

Chemically Stable Artificial Sei For Li-Ion Battery Electrodes, Qinglin Zhang, Lei Han, Jie Pan, Zhi Chen, Yang-Tse Cheng

Chemical and Materials Engineering Faculty Publications

The importance of coating's chemical stability in lithium-ion batteries has been demonstrated by this study. It is well known that the mechanical properties determine the cycle life, and chemical stability or chemical degradation rate determines the calendar life. In this study, we used HfO2 coatings prepared by atomic layer deposition as an example to show the chemical stability of the coatings for lithium ion battery electrodes.


Geometry-Driven Folding Of A Floating Annular Sheet, Joseph Paulsen, Vincent Démery, K. Buğra Toga, Zhanlong Qiu, Thomas P. Russell, Benny Davidovitch, Narayanan Menon Jan 2017

Geometry-Driven Folding Of A Floating Annular Sheet, Joseph Paulsen, Vincent Démery, K. Buğra Toga, Zhanlong Qiu, Thomas P. Russell, Benny Davidovitch, Narayanan Menon

Physics - All Scholarship

Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple twodimensional setting where an annular polymer sheet floating on an air-water interface is subjected to different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies that break axisymmetry. These states can be understood within a recent geometric approach for determining the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area functional. Our analysis explains the remarkable feature that the …


Plasma Processes And Polymers Third Special Issue On Plasma And Cancer, Mounir Laroussi, Annemie Bogaerts, Nazir Barekzi Dec 2016

Plasma Processes And Polymers Third Special Issue On Plasma And Cancer, Mounir Laroussi, Annemie Bogaerts, Nazir Barekzi

Electrical & Computer Engineering Faculty Publications

(First paragraph) This issue of Plasma Processes and Polymers is the third in a series on the applications of low temperature plasma (LTP) against cancer, or “plasma oncology.” The papers in this issue are inspired from the talks given at the third International Workshop on Plasma for Cancer Treatment (IWPCT) which took place on April 11–12, 2016 in Washington, DC, USA. IWPCT is an international workshop that was created in 2014 as a venue to share cutting edge plasma oncology research. The first IWPCT was held in Washington DC, under the co-chairmanship of Prof. Mounir Laroussi (Old Dominion University) and …


Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite May 2016

Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite

Publications and Research

Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0°C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.


Direct Band Gap Gallium Antimony Phosphide (GasbXP1-X) Alloys, H. B. Russell, A. N. Andriotis, Madhu Menon, J. B. Jasinski, A. Martinez-Garcia, M. K. Sunkara Feb 2016

Direct Band Gap Gallium Antimony Phosphide (GasbXP1-X) Alloys, H. B. Russell, A. N. Andriotis, Madhu Menon, J. B. Jasinski, A. Martinez-Garcia, M. K. Sunkara

Center for Computational Sciences Faculty Publications

Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 …


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


Where To Buy Materials For The Activities, Morton Sternheim Jan 2015

Where To Buy Materials For The Activities, Morton Sternheim

Nanotechnology Teacher Summer Institutes

Sources for some of the less common materials used in the activities.


Seeing At The Nanoscale: New Microscopies For The Life Sciences, Jennifer Ross Jan 2015

Seeing At The Nanoscale: New Microscopies For The Life Sciences, Jennifer Ross

Nanotechnology Teacher Summer Institutes

Visualizing single modules with fluorescence microscopy


Ozone, Uv, And Nanoparticles, Morton Sternheim, Jennifer Welborn Jan 2015

Ozone, Uv, And Nanoparticles, Morton Sternheim, Jennifer Welborn

Nanotechnology Teacher Summer Institutes

•Ultraviolet light causes skin damage and cancer •Ozone in the stratosphere blocks UV •Sunscreen blocks UV, partly •Nanoparticles in sunscreen improve blocking Sunscreen PowerPoint and activities based on NanoSense web site:

http://nanosense.sri.com/activities/clearsunscreen/index.html


Self Assembly, Mark Tuominem, Jennifer Welborn, Rob Snyder Jan 2015

Self Assembly, Mark Tuominem, Jennifer Welborn, Rob Snyder

Nanotechnology Teacher Summer Institutes

No abstract provided.