Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Applied Mathematics

2010

Frequency-domain shadowgraphy

Articles 1 - 2 of 2

Full-Text Articles in Physics

Holographic Visualization Of Laser Wakefields, Peng Dong, Steven A. Reed, Sunghwan A. Yi, Serguei Y. Kalmykov, Zhengyan Y. Li, Gennady Shvets, Nicholas H. Matlis, Christopher Mcguffey, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Karl Krushelnick, Anatoly Maksimchuk, Takeshi Matsuoka, Alexander G. R. Thomas, Victor Yanovsky, Michael C. Downer Apr 2010

Holographic Visualization Of Laser Wakefields, Peng Dong, Steven A. Reed, Sunghwan A. Yi, Serguei Y. Kalmykov, Zhengyan Y. Li, Gennady Shvets, Nicholas H. Matlis, Christopher Mcguffey, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Karl Krushelnick, Anatoly Maksimchuk, Takeshi Matsuoka, Alexander G. R. Thomas, Victor Yanovsky, Michael C. Downer

Serge Youri Kalmykov

We report ‘snapshots’ of laser-generated plasma accelerator structures acquired by frequency domain holography (FDH) and frequency domain shadowgraphy (FDS), techniques for visualizing quasi-static objects propagating near the speed of light. FDH captures images of sinusoidal wakes in mm-length plasmas of density 1 < n_{e} < 5 x 10^{18} cm^{−3} from phase modulations they imprint on co-propagating probe pulses. Changes in the wake structure (such as the curvature of the wavefront), caused by the laser and plasma parameter variations from shot to shot, were observed. FDS visualizes lasergenerated electron density bubbles in mm-length plasmas of density n_{e} > 10^{19} cm^{−3} using amplitude modulations they imprint on co-propagating probe pulses. Variations in the spatio-temporal structure of bubbles are inferred from corresponding variations in the shape of ‘bullets’ of probe light trapped inside them and correlated with mono-energetic electron generation. Both FDH and FDS average over structural variations that occur during propagation through the plasma medium. We explore …


Formation Of Optical Bullets In Laser-Driven Plasma Bubble Accelerators, Peng Dong, Steven A. Reed, Sunghwan A. Yi, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer, Nicholas H. Matlis, Wim P. Leemans, Christopher Mcguffey, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Karl Krushelnick, Anatoly Maksimchuk, Takeshi Matsuoka, Alexander G. R. Thomas, Victor Yanovsky Apr 2010

Formation Of Optical Bullets In Laser-Driven Plasma Bubble Accelerators, Peng Dong, Steven A. Reed, Sunghwan A. Yi, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer, Nicholas H. Matlis, Wim P. Leemans, Christopher Mcguffey, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Karl Krushelnick, Anatoly Maksimchuk, Takeshi Matsuoka, Alexander G. R. Thomas, Victor Yanovsky

Serge Youri Kalmykov

Electron density bubbles—wake structures generated in plasma of density n_{e} ~ 10^{19} cm^{-3} by the light pressure of intense ultrashort laser pulses—are shown to reshape weak copropagating probe pulses into optical ‘‘bullets.’’ The bullets are reconstructed using frequency-domain interferometric techniques in order to visualize bubble formation. Bullets are confined in three dimensions to plasma-wavelength size, and exhibit higher intensity, broader spectrum and flatter temporal phase than surrounding probe light, evidence of their compression by the bubble. Bullets observed at 0.8 < n_{e} < 1.2 x 10^{19} cm^{-3} provide the first observation of bubble formation below the electron capture threshold. At higher n_{e}, bullets appear with high shot-to-shot stability together with relativistic electrons that vary widely in spectrum, and help relate bubble formation to fast electron generation.