Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

A Study Of Fe3O4 Magnetic Nanoparticle Rf Heating In Gellan Gum Polymer Under Various Experimental Conditions For Potential Application In Drug Delivery, Gabriel Marcus Dec 2014

A Study Of Fe3O4 Magnetic Nanoparticle Rf Heating In Gellan Gum Polymer Under Various Experimental Conditions For Potential Application In Drug Delivery, Gabriel Marcus

USF Tampa Graduate Theses and Dissertations

Magnetic nanoparticles (MNPs) have found use in a wide variety of biomedical applications including hyperthermia, imaging and drug delivery. Certain physical properties, such as the ability to generate heat in response to an alternating magnetic field, make these structures ideal for such purposes. This study's objective was to elucidate the mechanisms primarily responsible for RF MNP heating and determine how such processes affect polymer solutions that might be useful in drug delivery. 15-20 nm magnetite (Fe3O4) nanoparticles at 0.2% and 0.5% concentrations were heated with RF fields of different strengths (200 Oe, 400 Oe and 600 …


High Dimensional Non-Linear Optimization Of Molecular Models, Joseph C. Fogarty Nov 2014

High Dimensional Non-Linear Optimization Of Molecular Models, Joseph C. Fogarty

USF Tampa Graduate Theses and Dissertations

Molecular models allow computer simulations to predict the microscopic properties of macroscopic systems. Molecular modeling can also provide a fully understood test system for the application of theoretical methods. The power of a model lies in the accuracy of the parameter values which govern its mathematical behavior. In this work, a new software, called ParOpt, for general high dimensional non-linear optimization will be presented. The software provides a very general framework for the optimization of a wide variety of parameter sets. The software is especially powerful when applied to the difficult task of molecular model parameter optimization. Three applications of …


Magneto-Optical Kerr Eect Study Of Magnetic Anisotropy In Soft Ferromagnets, Tatiana Marie Eggers Nov 2014

Magneto-Optical Kerr Eect Study Of Magnetic Anisotropy In Soft Ferromagnets, Tatiana Marie Eggers

USF Tampa Graduate Theses and Dissertations

The continued progress of modern information technology relies on understanding the influence of magnetic anisotropy on magnetic thin films. In this work, two sources of magnetic anisotropy are examined in two different soft ferromagnets: a uniaxial anisotropy induced during the fabrication of Ni80Fe20 and exchange anisotropy, or exchange bias, which occurs at the interface of Ni77Fe14Cu5Mo4/Fe50Mn50 bilayer. A home-built Magneto-optical Kerr effect magnetometer is used to measure the magnetic response of the soft ferromagnetic films and details of its construction are also discussed. A simple model …


Photophysical And Electronic Properties Of Low-Bandgap Semiconducting Polymers, Evan Lafalce Oct 2014

Photophysical And Electronic Properties Of Low-Bandgap Semiconducting Polymers, Evan Lafalce

USF Tampa Graduate Theses and Dissertations

In this Ph.D. work, we investigate the optoelectronic properties of low-bandgap semiconducting polymers and project the potential for employing these materials in electronic and photonics devices, with a particular emphasis on use in organic solar cells. The field of organic solar cells is well developed and many of the fundamental aspects of device operation and material requirements have been established. However, there is still more work to be done in order for these devices to ultimately reach their full potential and achieve commercialization. Of immediate concern is the low power conversion efficiency demonstrated in these devices so far. In order …


Analysis Of Critical Behavior In Magnetic Materials, Dustin David Belyea Jun 2014

Analysis Of Critical Behavior In Magnetic Materials, Dustin David Belyea

USF Tampa Graduate Theses and Dissertations

This work contains a broad study of a variety of magnetic materials undergoing second order phase transitions. In general this leads to an overall increase in information and analytical methods to further the field of magnetocalorics. Specifically, critical aspects of magnetocaloric materials were compared within systems in relation to structure, stoichiometry, magnetic minority phases and magnetic contaminants. Detailed analyses were developed to quantify techniques which were in the past used mainly in a qualitative way, leading to a more complete understanding of how critical phenomena impacts the magnetocaloric response.


Insights Into The Epitaxial Relationships Between One-Dimensional Nanomaterials And Metal Catalyst Surfaces Using Density Functional Theory Calculations, Debosruti Dutta Jun 2014

Insights Into The Epitaxial Relationships Between One-Dimensional Nanomaterials And Metal Catalyst Surfaces Using Density Functional Theory Calculations, Debosruti Dutta

USF Tampa Graduate Theses and Dissertations

This dissertation involves the study of epitaxial behavior of one-dimensional nanomaterials like single-walled carbon nanotubes and Indium Arsenide nanowires grown on metallic catalyst surfaces. It has been previously observed in our novel microplasma based CVD growth of SWCNTs on Ni-Fe bimetallic nanoparticles that changes in the metal catalyst composition was accompanied by variations in the average metal-metal bond lengths of the nanoparticle and that in turn, affected nanotube chirality distributions. In this dissertation, we have developed a very simplistic model of the metal catalyst in order to explain the nanotube growth of specific nanotube chiralities on various Ni-Fe catalyst surfaces. …


The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash May 2014

The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash

USF Tampa Graduate Theses and Dissertations

The discovery of ferroelectricity at the nanoscale has incited a lot of interest in perovskite ferroelectrics not only for their potential in device application but also for their potential to expand fundamental understanding of complex phenomena at very small size scales. Unfortunately, not much is known about the dynamics of ferroelectrics at this scale. Many of the widely held theories for ferroelectric materials are based on bulk dynamics which break down when applied to smaller scales. In an effort to increase understanding of nanoscale ferroelectric materials we use atomistic resolution computational simulations to investigate the dynamics of polar perovskites. Within …


Skutterudite Derivatives: A Fundamental Investigation With Potential For Thermoelectric Applications, Kaya Wei May 2014

Skutterudite Derivatives: A Fundamental Investigation With Potential For Thermoelectric Applications, Kaya Wei

USF Tampa Graduate Theses and Dissertations

Thermoelectric devices allow for direct conversion of heat into electricity as well as solid-state refrigeration. The skutterudite family of compounds continues to be of considerable interest both scientifically and technologically due to their unique physical properties, in particular as promising thermoelectric materials. In this thesis, the basic thermoelectric phenomena and some background history on skutterudites will be reviewed. Rhombohedral derivatives of the cubic skutterudite CoSb3, namely Co4-xFexGe6Se6 with x=0, 1, 1.5 (p-type) and rare-earth filled Ce0.13Co4Ge6Se6 and Yb0.14Co4Ge6Se6 (n-type), were synthesized and their synthesis and low temperature transport properties will be discussed.

Reitveld refinement and elemental analysis were used to …


Study Of The Motility Of Biological Cells By Digital Holographic Microscopy, Xiao Yu May 2014

Study Of The Motility Of Biological Cells By Digital Holographic Microscopy, Xiao Yu

USF Tampa Graduate Theses and Dissertations

In this dissertation, I utilize digital holographic microscopy (DHM) to study the motility of biological cells. As an important feature of DHM, quantitative phase microscopy by digital holography (DH-QPM) is applied to study the cell-substrate interactions and migratory behavior of adhesive cells. The traction force exerted by biological cells is visualized as distortions in flexible substrata. Motile fibroblasts produce wrinkles when attached to a silicone rubber film. For the non-wrinkling elastic substrate polyacrylamide (PAA), surface deformation due to fibroblast adhesion and motility is visualized as tangential and vertical displacement. This surface deformation and the associated cellular traction forces are measured …


It's About Time: Dynamics Of Inflationary Cosmology As The Source Of The Asymmetry Of Time, Emre Keskin Apr 2014

It's About Time: Dynamics Of Inflationary Cosmology As The Source Of The Asymmetry Of Time, Emre Keskin

USF Tampa Graduate Theses and Dissertations

This project is about the asymmetry of time. The main source of discontent for physicists and philosophers alike is that even though in every physical theory we developed and/or discovered for explaining how the universe functions, the laws are time reversal invariant; there seems to be a very genuine asymmetry between the past and the future. The aim of this project is to examine several attempts to solve this friction between the laws of physics and the asymmetry and provide a new proposal that makes use of modern cosmology. In the recent history of physics and in contemporary philosophy of …


Photocatalysis And Grazing-Ion Beam Surface Modifications Of Planar Tio2 Model Systems, Timothy Luttrell Apr 2014

Photocatalysis And Grazing-Ion Beam Surface Modifications Of Planar Tio2 Model Systems, Timothy Luttrell

USF Tampa Graduate Theses and Dissertations

This dissertation is related to the understanding of catalytic reactions of metal oxides. For several decades, the surfaces and bulk of materials have been probed to determine additional properties that relate to photocatalytic applications. This investigation furthers these efforts by the (a) modification of a metal oxide surface to isolate known influences of chemical properties and (b) proposing and utilizing a novel methodology for attribution of photocatalytic activity to a discernable influence. For the first effort, by effectively utilizing a known technique for a new application on a metal oxide, such isolations can be made despite unfavorable states. For the …


First-Principles Atomistic Simulations Of Energetic Materials, Aaron Christopher Landerville Apr 2014

First-Principles Atomistic Simulations Of Energetic Materials, Aaron Christopher Landerville

USF Tampa Graduate Theses and Dissertations

This dissertation is concerned with the understanding of physico-chemical properties of energetic materials (EMs). Recently, a substantial amount of work has been directed towards calculations of equations of state and structural changes upon compression of existing EMs, as well as elucidating the underlying chemistry of initiation in detonating EMs. This work contributes to this effort by 1) predicting equations of state and thermo-physical properties of EMs, 2) predicting new phases of novel EMs, and 3) examining the initial stages of chemistry that result in detonation in EMs. The motivation for the first thrust, is to provide thermodynamic properties as input …