Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

T. -C. Shen

Nanoscale

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Nanoscale Oxide Patterns On Si (100) Surfaces, T. -C. Shen, C. Wang, J. W. Lyding, J. R. Tucker Dec 1995

Nanoscale Oxide Patterns On Si (100) Surfaces, T. -C. Shen, C. Wang, J. W. Lyding, J. R. Tucker

T. -C. Shen

Ultrathin oxide patterns of a linewidth of 50 Å have been created on Si(100)‐2×1 surfaces by a scanning tunneling microscope operating in ultrahigh vacuum. The oxide thickness is estimated to be 4–10 Å. The morphology and spectroscopy of the oxide region are obtained. Hydrogen passivation is used as an oxidation mask. The defects caused by oxidation in the passivated region before and after the hydrogen desorption are compared and discussed. The multistep silicon processings by an ultrahigh vacuum scanning tunneling micropscope is thus demonstrated.


Nanoscale Patterning And Oxidation Of H-Passivated Si(100)-2x1 Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, T. -C. Shen, J. S. Hubaceck, J. R. Tucker, G. C. Abeln Jan 1994

Nanoscale Patterning And Oxidation Of H-Passivated Si(100)-2x1 Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, T. -C. Shen, J. S. Hubaceck, J. R. Tucker, G. C. Abeln

T. -C. Shen

Nanoscale patterning of the hydrogen terminated Si(100)‐2×1 surface has been achieved with an ultrahigh vacuum scanning tunneling microscope.Patterning occurs when electrons field emitted from the probe locally desorb hydrogen, converting the surface into clean silicon. Linewidths of 1 nm on a 3 nm pitch are achieved by this technique. Local chemistry is also demonstrated by the selective oxidation of the patterned areas. During oxidation, the linewidth is preserved and the surrounding H‐passivated regions remain unaffected, indicating the potential use of this technique in multistep lithography processes.