Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Renormalization Scale Invariant Pqcd Predictions For R(E+ E-) And The Bjorken Sum Rule At Next-To-Leading Order, Michael Binger, Chueng-Ryong Ji, David G. Robertson May 2000

Renormalization Scale Invariant Pqcd Predictions For R(E+ E-) And The Bjorken Sum Rule At Next-To-Leading Order, Michael Binger, Chueng-Ryong Ji, David G. Robertson

Physics Faculty Scholarship

We discuss the application of the physical QCD effective charge αV, defined via the heavy-quark potential, in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie prescription for fixing the renormalization scales, the resulting series are automatically and naturally scale and scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such commensurate scale relations for the e+e− annihilation ratio Re+e− and the Bjorken sum rule. In both cases the improved predictions are in excellent agreement with experiment.


On The Bosonic Spectrum Of Qcd (1+1) With Su(N) Currents, Uwe Trittmann Jan 2000

On The Bosonic Spectrum Of Qcd (1+1) With Su(N) Currents, Uwe Trittmann

Physics Faculty Scholarship

In this note we calculate the spectrum of two-dimensional QCD. We formulate the theory with SU(Nc) currents rather than with fermionic operators. We construct the Hamiltonian matrix in DLCQ formulation as a function of the harmonic resolution K and the numbers of flavors N f and colors N c.The resulting numerical eigenvalue spectrum is free from trivial multi-particle states which obscured previous results. The well-known ’t Hooft and large N f spectra are reproduced. In the case of adjoint fermions we present some new results.


Towards Testing The Maldacena Conjecture With Sdlcq, Uwe Trittmann Jan 2000

Towards Testing The Maldacena Conjecture With Sdlcq, Uwe Trittmann

Physics Faculty Scholarship

We consider the Maldacena conjecture applied to the near horizon geometry of a D1-brane in the supergravity approximation and present numerical results of a test of the conjecture against the boundary field theory calculation using supersymmetric discrete light-cone quantization (SDLCQ). We present numerical results with approximately 1000 times as many states as we previously considered. These results support the Maldacena conjecture and are within 10–15% of the predicted numerical results in some regions. Our results are still not sufficient to demonstrate convergence, and, therefore, cannot be considered to a numerical proof of the conjecture. We present a method for …