Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Density Functional Theory

Articles 1 - 7 of 7

Full-Text Articles in Physics

The Conundrum Of Relaxation Volumes In First-Principles Calculations Of Charged Defects In Uo₂, Anuj Goyal, Kiran Mathew, Richard G. Hennig, Aleksandr V. Chernatynskiy Dec 2019

The Conundrum Of Relaxation Volumes In First-Principles Calculations Of Charged Defects In Uo₂, Anuj Goyal, Kiran Mathew, Richard G. Hennig, Aleksandr V. Chernatynskiy

Physics Faculty Research & Creative Works

The defect relaxation volumes obtained from density-functional theory (DFT) calculations of charged vacancies and interstitials are much larger than their neutral counterparts, seemingly unphysically large. We focus on UO2 as our primary material of interest, but also consider Si and GaAs to reveal the generality of our results. In this work, we investigate the possible reasons for this and revisit the methods that address the calculation of charged defects in periodic DFT. We probe the dependence of the proposed energy corrections to charged defect formation energies on relaxation volumes and find that corrections such as potential alignment remain ambiguous with …


Role Of Composition And Structure On The Properties Of Metal/Multifunctional Ceramic Interfaces, Fang Yin Lin, Aleksandr V. Chernatynskiy, Juan Claudio Nino, Jacob L. Jones, Richard G. Hennig, Susan Sinnott Jan 2016

Role Of Composition And Structure On The Properties Of Metal/Multifunctional Ceramic Interfaces, Fang Yin Lin, Aleksandr V. Chernatynskiy, Juan Claudio Nino, Jacob L. Jones, Richard G. Hennig, Susan Sinnott

Physics Faculty Research & Creative Works

The formation of intermetallic secondary phases, such as Pt3Pb, has been observed experimentally at PbTiO3/Pt and Pb(Zr,Ti)O3/Pt, or PZT/Pt, interfaces. Density functional theory calculations are used here to calculate the work of adhesion of these interfacial systems with and without the secondary intermetallic phase. The charge density maps of the interfaces reveal the electronic interactions at the interface and the impact of the secondary phase. In addition, Bader charge analysis provides a quantitative assessment of electron transfer from the perovskites to the Pt. Analysis of the band diagrams indicates an increase of the potential …


Computational Discovery Of Lanthanide Doped And Co-Doped Y₃Al₅O₁₂ For Optoelectronic Applications, Kamal Kumar Choudhary, Aleksandr V. Chernatynskiy, Kiran Mathew, Eric W. Bucholz, Simon R. Phillpot, Susan Sinnott, Richard G. Hennig Jan 2015

Computational Discovery Of Lanthanide Doped And Co-Doped Y₃Al₅O₁₂ For Optoelectronic Applications, Kamal Kumar Choudhary, Aleksandr V. Chernatynskiy, Kiran Mathew, Eric W. Bucholz, Simon R. Phillpot, Susan Sinnott, Richard G. Hennig

Physics Faculty Research & Creative Works

We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials for …


Built-In Electric Field Assisted Spin Injection In Cr And Mn Δ-Layer Doped Aln/Gan(0001) Heterostructures From First Principles, X. Y. Cui, Julia E. Medvedeva, B. Delley, C. Stampfl, Arthur J. Freeman Dec 2008

Built-In Electric Field Assisted Spin Injection In Cr And Mn Δ-Layer Doped Aln/Gan(0001) Heterostructures From First Principles, X. Y. Cui, Julia E. Medvedeva, B. Delley, C. Stampfl, Arthur J. Freeman

Physics Faculty Research & Creative Works

Highly spin-polarized diluted ferromagnetic semiconductors are expected to be widely used as ideal spin injectors. Here, extensive first-principles density-functional theory calculations have been performed to investigate the feasibility of using Cr- and Mn-doped wurtzite polar AlN/GaN(0001) heterostructures, with the aim to realize the appealing half-metallic character and, hence, efficient electrical spin injection. To overcome the formation of detrimental embedded clusters, we propose digital delta-layer doping perpendicular to the growth direction so as to realize enhanced performance at room temperature. The formation energy, electronic and magnetic properties, and the degree of spin polarization for both neutral and charged valence states for …


Tunable Conductivity And Conduction Mechanism In An Ultraviolet Light Activated Electronic Conductor, Mariana I. Bertoni, Thomas O. Mason, Julia E. Medvedeva, Arthur J. Freeman, Kenneth R. Poeppelmeier, B. Delley Jan 2005

Tunable Conductivity And Conduction Mechanism In An Ultraviolet Light Activated Electronic Conductor, Mariana I. Bertoni, Thomas O. Mason, Julia E. Medvedeva, Arthur J. Freeman, Kenneth R. Poeppelmeier, B. Delley

Physics Faculty Research & Creative Works

A tunable conductivity has been achieved by controllable substitution of an ultraviolet light activated electronic conductor. The transparent conducting oxide system H-doped Ca12-xMgxAl14O33 (x=0,0.1,0.3,0.5,0.8,1.0) presents a conductivity that is strongly dependent on the substitution level and temperature. Four-point dc-conductivity decreases with x from 0.26 S/cm (x=0) to 0.106 S/cm (x=1) at room temperature. At each composition the conductivity increases (reversibly with temperature) until a decomposition temperature is reached; above this value, the conductivity drops dramatically due to hydrogen recombination and loss. The observed conductivity behavior is consistent with the predictions of our first principles density functional calculations for the Mg-substituted …


Role Of Embedded Clustering In Dilute Magnetic Semiconductors: Cr Doped Gan, Julia E. Medvedeva, B. Delley, N. Newman, C. Stampfl, X. Y. Cui, Arthur J. Freeman Jan 2005

Role Of Embedded Clustering In Dilute Magnetic Semiconductors: Cr Doped Gan, Julia E. Medvedeva, B. Delley, N. Newman, C. Stampfl, X. Y. Cui, Arthur J. Freeman

Physics Faculty Research & Creative Works

Results of extensive density-functional studies provide direct evidence that Cr atoms in Cr:GaN have a strong tendency to form embedded clusters, occupying Ga sites. Significantly, for larger than 2-Cr-atom clusters, states containing antiferromagnetic coupling with net spin in the range 0.06-1.47 µB/Cr are favored. We propose a picture where various configurations coexist and the statistical distribution and associated magnetism will depend sensitively on the growth details. Such a view may elucidate many puzzling observations related to the structural and magnetic properties of III-N and other dilute semiconductors.


Electronic Structure Properties And Bcs Superconductivity In Ss-Pyrochlore Oxides: KoSS₂O₆, Rolando Saniz, Julia E. Medvedeva, Lin Hui Ye, Tatsuya Shishidou, Arthur J. Freeman Sep 2004

Electronic Structure Properties And Bcs Superconductivity In Ss-Pyrochlore Oxides: KoSS₂O₆, Rolando Saniz, Julia E. Medvedeva, Lin Hui Ye, Tatsuya Shishidou, Arthur J. Freeman

Physics Faculty Research & Creative Works

We report a first-principles density-functional calculation of the electronic structure and properties of the recently discovered superconducting β-pyrochlore oxide KOs2O6. We find that the electronic structure near the Fermi energy EF is dominated by strongly hybridized Os 5d and O 2p states. A van Hove singularity very close to Ef leads to a relatively large density of states at EF, and the Fermi surface exhibits strong nesting along several directions. These features could provide the scattering processes leading to the observed anomalous temperature dependence of the resistivity and to the rather large …