Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Series

2010

Helium

Articles 1 - 4 of 4

Full-Text Articles in Physics

Reaction Dynamics In Double Ionization Of Helium By Electron Impact, Marcelo F. Ciappina, Michael Schulz, Tom Kirchner Dec 2010

Reaction Dynamics In Double Ionization Of Helium By Electron Impact, Marcelo F. Ciappina, Michael Schulz, Tom Kirchner

Physics Faculty Research & Creative Works

We present theoretical fully differential cross sections (FDCS) for double ionization of helium by 500 eV and 2 keV electron impact. Contributions from various reaction mechanisms to the FDCS were calculated separately and compared to experimental data. Our theoretical methods are based on the first Born approximation. Higher-order effects are incorporated using the Monte Carlo event generator technique. Earlier, we successfully applied this approach to double ionization by ion impact, and in the work reported here it is extended to electron impact. We demonstrate that at 500 eV impact energy, double ionization is dominated by higher-order mechanisms. Even at 2 …


Theoretical Fully Differential Cross Sections For Double-Charge-Transfer Collisions, Allison L. Harris, Jerry Peacher, Don H. Madison Aug 2010

Theoretical Fully Differential Cross Sections For Double-Charge-Transfer Collisions, Allison L. Harris, Jerry Peacher, Don H. Madison

Physics Faculty Research & Creative Works

We present a four-body model for double charge transfer, called the four-body double-capture model. This model explicitly treats all four particles in the collision, and we apply it here to fully differential cross sections (FDCSs) for proton+helium collisions. The effects of initial- and final-state electron correlations are studied, as well as the role of the projectile-nucleus interaction. We also present results for proton+helium single capture, as well as single-capture:double-capture ratios of FDCSs.


Comment On "Coincidence Studies Of He Ionized By C⁶⁺, Au²⁴⁺, And Au⁵³⁺", Michael Schulz, Robert Moshammer, Daniel Fischer, Joachim Hermann Ullrich Jun 2010

Comment On "Coincidence Studies Of He Ionized By C⁶⁺, Au²⁴⁺, And Au⁵³⁺", Michael Schulz, Robert Moshammer, Daniel Fischer, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

In a recent article, McGovern [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA. 81.042704 81, 042704 (2010)] suggested that the normalization of our measured fully differential cross section for ionization of helium by Au53+ needs to be checked. In this comment we confirm that the normalization of the published data is correct. Furthermore, we point out that, for a conclusive comparison between experiment and theory, an accurate inclusion of the experimental resolution using correct experimental parameters in the calculation is important.


Four-Body Charge Transfer Processes In Heavy Particle Collisions, Allison L. Harris, Jerry Peacher, Michael Schulz, Don H. Madison Jan 2010

Four-Body Charge Transfer Processes In Heavy Particle Collisions, Allison L. Harris, Jerry Peacher, Michael Schulz, Don H. Madison

Physics Faculty Research & Creative Works

Fully differential cross sections (FDCS) for proton + helium single capture and transfer-excitation collisions are presented using the Four-Body Transfer-Excitation (4BTE) model. This is a first order perturbative model that allows for any two-particle interaction to be studied. For single capture, the effect of the projectile-nuclear term in the perturbation is examined. It is shown that inclusion of this term results in an unphysical minimum in the FDCS, but is required to correctly predict the magnitude of the experimental results. For transfer-excitation, the role of electron correlation in the target helium atom is studied, and shown to be unimportant in …