Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physics

Monitoring Water Meniscus Formation At Nanocontacts With Shear-Force Acousto Near-Field Microscopy, Xiaohua Wang, Rodolfo Fernandez, Theodore Brockman, Kacharat Supichayanggoon, Andres H. La Rosa Jun 2024

Monitoring Water Meniscus Formation At Nanocontacts With Shear-Force Acousto Near-Field Microscopy, Xiaohua Wang, Rodolfo Fernandez, Theodore Brockman, Kacharat Supichayanggoon, Andres H. La Rosa

Physics Faculty Publications and Presentations

Shear-force acoustic near-field microscopy (SANM) is employed to monitor stochastic formation and post dynamic response of a water meniscus that bridges a tapered gold probe (undergoing lateral oscillations of a few nanometers amplitude at constant frequency) and a flat (gold or silicon oxide) substrate. As the probe further approaches the substrate, its amplitude decreases. Shear forces (of yet unknown precise origin) are typically invoked to explain the apparently pure damping effects affecting the probe's motion. Herein, SANM measurements underscore instead the role of near-field acoustic emission from the water meniscus as an elastic energy dissipation channel involved in shear interactions. …


Motion History Images: A New Method For Tracking Microswimmers In 3d, Max Riekeles, Hadi Albalkhi, Megan Marie Dubay, Jay Nadeau, Christian A. Lindensmith May 2024

Motion History Images: A New Method For Tracking Microswimmers In 3d, Max Riekeles, Hadi Albalkhi, Megan Marie Dubay, Jay Nadeau, Christian A. Lindensmith

Physics Faculty Publications and Presentations

Quantitative tracking of rapidly moving micron-scale objects remains an elusive challenge in microscopy due to low signal-to-noise. This paper describes a novel method for tracking micron-sized motile organisms in off-axis Digital Holographic Microscope (DHM) raw holograms and/or reconstructions. We begin by processing the microscopic images with the previously reported Holographic Examination for Life-like Motility (HELM) software, which provides a variety of tracking outputs including motion history images (MHIs). MHIs are stills of videos where the frame-to-frame changes are indicated with color time-coding. This exposes tracks of objects that are difficult to identify in individual frames at a low signal-to-noise ratio. …


Impact Of Property Covariance On Cluster Weak Lensing Scaling Relations, Zhuowen Zhang, Arya Farahi, Daisuke Nagai, Erwin T. Lau, Joshua Frieman, Marina Ricci, Anja Von Der Linden, Hao-Yi Wu, Lsst Dark Energy Science Collaboration May 2024

Impact Of Property Covariance On Cluster Weak Lensing Scaling Relations, Zhuowen Zhang, Arya Farahi, Daisuke Nagai, Erwin T. Lau, Joshua Frieman, Marina Ricci, Anja Von Der Linden, Hao-Yi Wu, Lsst Dark Energy Science Collaboration

Physics Faculty Publications and Presentations

We present an investigation into a hitherto unexplored systematic that affects the accuracy of galaxy cluster mass estimates with weak gravitational lensing. Specifically, we study the covariance between the weak lensing signal, ΔΣ, and the ‘true’ cluster galaxy number count, Ngal, as measured within a spherical volume that is void of projection effects. By quantifying the impact of this covariance on mass calibration, this work reveals a significant source of systematic uncertainty. Using the MDPL2 simulation with galaxies traced by the SAGE semi-analytic model, we measure the intrinsic property covariance between these observables within the three-dimensional vicinity of …


Effects Of Heterogeneous Data Sets And Time-Lag Measurement Techniques On Cosmological Parameter Constraints From Mg Ii And C Iv Reverberation-Mapped Quasar Data, Shulei Cao, Michal Zajaček, Bożena Czerny, Swayamtrupta Panda, Bharat Ratra Apr 2024

Effects Of Heterogeneous Data Sets And Time-Lag Measurement Techniques On Cosmological Parameter Constraints From Mg Ii And C Iv Reverberation-Mapped Quasar Data, Shulei Cao, Michal Zajaček, Bożena Czerny, Swayamtrupta Panda, Bharat Ratra

Physics Faculty Publications and Presentations

Previously, we demonstrated that Mg II and C IV reverberation-mapped quasars (RM QSOs) are standardizable and that the cosmological parameters inferred using the broad-line region radius–luminosity (R–L) relation are consistent with those determined from better-established cosmological probes. With more data expected from ongoing and future spectroscopic and photometric surveys, it is imperative to examine how new QSO data sets of varied quality, with their own specific luminosity and time-delay distributions, can be best used to determine more restrictive cosmological parameter constraints. In this study, we test the effect of adding 25 OzDES Mg II RM QSOs as well …


Fluorescence Microscopy With Deep Uv, Near Uv, And Visible Excitation For In Situ Detection Of Microorganisms, Noel Case, Nikki Johnston, Jay Nadeau Apr 2024

Fluorescence Microscopy With Deep Uv, Near Uv, And Visible Excitation For In Situ Detection Of Microorganisms, Noel Case, Nikki Johnston, Jay Nadeau

Physics Faculty Publications and Presentations

We report a simple, inexpensive design of a fluorescence microscope with light-emitting diode (LED) excitation for detection of labeled and unlabeled microorganisms in mineral substrates. The use of deep UV (DUV) excitation with visible emission requires no specialized optics or slides and can be implemented easily and inexpensively using an oblique illumination geometry. DUV excitation (<280 >nm) is preferable to near UV (365 nm) for avoidance of mineral autofluorescence. When excited with DUV, unpigmented bacteria show two emission peaks: one in the near UV ∼320 nm, corresponding to proteins, and another peak in the blue to green range, corresponding to …


Open-Inquiry Opens Doors To Intriguing Optics Experiments At Home: A Case Study, Paul R. Destefano, Ralf Widenhorn Mar 2024

Open-Inquiry Opens Doors To Intriguing Optics Experiments At Home: A Case Study, Paul R. Destefano, Ralf Widenhorn

Physics Faculty Publications and Presentations

[This paper is part of the Focused Collection on Instructional labs: Improving traditions and new directions.] This manuscript presents a case study of an introductory physics student who, during the remote learning conditions imposed during the COVID-19 pandemic, found inspiration within a new, openinquiry, project-based, laboratory curriculum designed at Portland State University. The phenomenon investigated by the study subject was intriguing to both the student and the lab instructors for its unfamiliar and instructive optical effect: a ring-shaped pattern or halo created by a laser diffusely reflected in a shallow body of water. Drawing on classwork and interview responses, this …


3F4 Hypergeometric Functions As A Sum Of A Product Of 2F3 Functions, Jack C. Straton Mar 2024

3F4 Hypergeometric Functions As A Sum Of A Product Of 2F3 Functions, Jack C. Straton

Physics Faculty Publications and Presentations

This paper shows that certain 3F4 hypergeometric functions can be expanded in sums of pair products of 2F3 functions, which reduce in special cases to 2F3 functions expanded in sums of pair products of 1F2 functions. This expands the class of hypergeometric functions having summation theorems beyond those expressible as pair-products of generalized Whittaker functions, 2F1 functions, and 3F2 functions into the realm of pFq functions where p < q for both the summand and terms in the series. In addition to its intrinsic value, this result has a specific application in calculating the response of the atoms to laser stimulation in the Strong Field Approximation.


Integral Representations Over Finite Limits For Quantum Amplitudes, Jack C. Straton Feb 2024

Integral Representations Over Finite Limits For Quantum Amplitudes, Jack C. Straton

Physics Faculty Publications and Presentations

We extend previous research to derive three additional M-1-dimensional integral representations over the interval [0,1]" The prior version covered the interval [0,∞]" role="presentation position: relative;">[0,∞][0,∞]. This extension applies to products of M Slater orbitals, since they (and wave functions derived from them) appear in quantum transition amplitudes. It enables the magnitudes of coordinate vector differences (square roots of polynomials) |x1−x2|=x12−2x1x2cosθ+x22" to be shifted from disjoint products of functions into a single quadratic form, allowing for the completion of its square. The M-1-dimensional integral representations of M Slater orbitals that both this extension and the prior version introduce …


The Fourier–Legendre Series Of Bessel Functions Of The First Kind And The Summed Series Involving 1F2 Hypergeometric Functions That Arise From Them, Jack C. Straton Feb 2024

The Fourier–Legendre Series Of Bessel Functions Of The First Kind And The Summed Series Involving 1F2 Hypergeometric Functions That Arise From Them, Jack C. Straton

Physics Faculty Publications and Presentations

The Bessel function of the first kind JN(kx) is expanded in a Fourier–Legendre series, as is the modified Bessel function of the first kind IN(kx). The purpose of these expansions in Legendre polynomials was not an attempt to rival established numerical methods for calculating Bessel functions but to provide a form for JN(kx) useful for analytical work in the area of strong laser fields, where analytical integration over scattering angles is essential. Despite their primary purpose, one can easily truncate the series at 21 terms to provide 33-digit accuracy that matches the IEEE extended precision in …


Cholesterol Content Regulates The Interaction Of Αa-, Αb-, And Α-Crystallin With The Model Of Human Lens-Lipid Membranes, Raju Timsina, Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Navdeep Kalkat, Laxman Mainali Feb 2024

Cholesterol Content Regulates The Interaction Of Αa-, Αb-, And Α-Crystallin With The Model Of Human Lens-Lipid Membranes, Raju Timsina, Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Navdeep Kalkat, Laxman Mainali

Physics Faculty Publications and Presentations

α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. …


Association Of Alpha-Crystallin With Human Cortical And Nuclear Lens Lipid Membrane Increases With The Grade Of Cortical And Nuclear Cataract, Preston Hazen, Geraline Trossi-Torres, Raju Timsina, Nawal K. Khadka, Laxman Mainali Feb 2024

Association Of Alpha-Crystallin With Human Cortical And Nuclear Lens Lipid Membrane Increases With The Grade Of Cortical And Nuclear Cataract, Preston Hazen, Geraline Trossi-Torres, Raju Timsina, Nawal K. Khadka, Laxman Mainali

Physics Faculty Publications and Presentations

Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) …


Buzzard To Cardinal: Improved Mock Catalogs For Large Galaxy Surveys, Chun-Hao To, Joseph Derose, Risa H. Wechsler, Eli Rykoff, Hao-Yi Wu, Susmita Adhikari, Elisabeth Krause, Eduardo Rozo, David H. Weinberg Jan 2024

Buzzard To Cardinal: Improved Mock Catalogs For Large Galaxy Surveys, Chun-Hao To, Joseph Derose, Risa H. Wechsler, Eli Rykoff, Hao-Yi Wu, Susmita Adhikari, Elisabeth Krause, Eduardo Rozo, David H. Weinberg

Physics Faculty Publications and Presentations

We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated to support ongoing and future cosmological surveys, including the Dark Energy Survey (DES), DESI, and LSST. These catalogs are based on a one-quarter sky simulation populated with galaxies out to a redshift of z = 2.35 to a depth of mr = 27. Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo properties. This model can simultaneously fit galaxy clustering and group–galaxy …


The Dynamic Universe: Realizing The Potential Of Classical Time Domain And Multimessenger Astrophysics, Steve B. Howell, D. Andrew Howell, R. A. Street, Melinda Soares-Furtado, Brian Jackson, Thomas P. Greene Jan 2024

The Dynamic Universe: Realizing The Potential Of Classical Time Domain And Multimessenger Astrophysics, Steve B. Howell, D. Andrew Howell, R. A. Street, Melinda Soares-Furtado, Brian Jackson, Thomas P. Greene

Physics Faculty Publications and Presentations

In parallel with the multi-messenger revolution, major advances in time-domain astronomy across multiple science disciplines relevant to astrophysics are becoming more urgent to address. Aside from electromagnetic observations of gravitational wave events and explosive counterparts, there are a number of “classical” astrophysical areas that require new thinking for proper exploration in the time domain. How NASA, NSF, ESA, and ESO consider the 2020 USA Decadal Survey within the astronomy community, as well as the worldwide call to support and expand time domain and multi-messenger astrophysics, it is crucial that all areas of astrophysics, including stellar, galactic, Solar System, and exoplanetary …


The Use Of Fluorescence Lifetime Imaging (Flim) For In Situ Microbial Detection In Complex Mineral Substrates, Yekaterina G. Chmykh, Jay Nadeau Jan 2024

The Use Of Fluorescence Lifetime Imaging (Flim) For In Situ Microbial Detection In Complex Mineral Substrates, Yekaterina G. Chmykh, Jay Nadeau

Physics Faculty Publications and Presentations

The utility of fluorescence lifetime imaging microscopy (FLIM) for identifying bacteria in complex mineral matrices was investigated. Baseline signals from unlabelled Bacillus subtilis and Euglena gracilis, and Bacillus subtilis labelled with SYTO 9 were obtained using two-photon excitation at 730, 750 and 800 nm, identifying characteristic lifetimes of photosynthetic pigments, unpigmented cellular autofluorescence, and SYTO 9. Labelled and unlabelled B. subtilis were seeded onto marble and gypsum samples containing endolithic photosynthetic cyanobacteria and the ability to distinguish cells from mineral autofluorescence and nonspecific dye staining was examined in parallel with ordinary multichannel confocal imaging. It was found that FLIM …


Electromagnetic Fields And Radiation From Localized Current Source Interacting With A Cosmic Axion Field In The Context Of Massive Axion Electrodynamics, Railing Chang, P. T. Leung Jan 2024

Electromagnetic Fields And Radiation From Localized Current Source Interacting With A Cosmic Axion Field In The Context Of Massive Axion Electrodynamics, Railing Chang, P. T. Leung

Physics Faculty Publications and Presentations

Electromagnetic fields from localized current source interacting with an oscillatory cosmic axion field are studied, accounting for the possibility of a finite photon mass. In particular, focus will be on the dipole radiation from static current sources. The Proca theory is generalized to include the axion field and solutions to the modified EM field equations are obtained to first order in the axion coupling parameter. Analysis of the interplay between the two vanishingly small parameters – the axion mass (via the coupling constant and the oscillating frequency) and the photon mass – is carried out with reference to possible future …