Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Publications

2020

Nucleon-nucleon interactions

Articles 1 - 2 of 2

Full-Text Articles in Physics

Probing The Deuteron At Very Large Internal Momenta, C. Yero, D. Abrams, Z Ahmed, F. Hauenstein, S.A. Wood, J. Zhang, Et Al., Hall C. Collaboration Jan 2020

Probing The Deuteron At Very Large Internal Momenta, C. Yero, D. Abrams, Z Ahmed, F. Hauenstein, S.A. Wood, J. Zhang, Et Al., Hall C. Collaboration

Physics Faculty Publications

We measure 2H(e,e′p)n cross sections at 4-momentum transfers of Q2 = 4.5 ± 0.5   (GeV/c)2 over a range of neutron recoil momenta pr, reaching up to ∼1.0  GeV/c. We obtain data at fixed neutron recoil angles θnq = 35°, 45°, and 75° with respect to the 3-momentum transfer q. The new data agree well with previous data, which reached pr ∼ 500  MeV/c. At θnq = 35° and 45°, final state interactions, meson exchange currents, and isobar currents are suppressed and the plane wave impulse approximation provides the dominant cross section contribution. …


Probing Few-Body Nuclear Dynamics Via ³H And ³He (E E'P) Pn Cross-Section Measurements, R. Cruz-Torres, F. Hauenstein, D. Bulumulla, C. Hyde, M. Khachatryan, M.N.H. Rashad, L.B. Weinstein, Et. Al., Jefferson Lab Hall A. Tritium Collaboration Jan 2020

Probing Few-Body Nuclear Dynamics Via ³H And ³He (E E'P) Pn Cross-Section Measurements, R. Cruz-Torres, F. Hauenstein, D. Bulumulla, C. Hyde, M. Khachatryan, M.N.H. Rashad, L.B. Weinstein, Et. Al., Jefferson Lab Hall A. Tritium Collaboration

Physics Faculty Publications

We report the first measurement of the (e, e'p) three-body breakup reaction cross sections in helium-3 (3He) and tritium (3H) at large momentum transfer [< Q2> ≈ 1.9 (GeV/c)2] and xB> 1 kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta 40 ≤ pmiss ≤ 500 MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon. The measured cross sections are compared with state-of-the-art ab initio calculations. Overall …