Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Publications

2011

Nanophotonics

Discipline

Articles 1 - 2 of 2

Full-Text Articles in Physics

Scaling Of Losses With Size And Wavelength In Nanoplasmonics And Metamaterials, Jacob B. Khurgin, Greg Sun Nov 2011

Scaling Of Losses With Size And Wavelength In Nanoplasmonics And Metamaterials, Jacob B. Khurgin, Greg Sun

Physics Faculty Publications

We show that, for the resonant metal-dielectric structures with sub-wavelength confinement of light in all three dimensions, the loss cannot be reduced considerably below the loss of the metal itself unless one operates in the far IR and THz regions of the spectrum or below. Such high losses cannot be compensated by introducing gain due to Purcell-induced shortening of recombination times. The only way low loss optical meta-materials can be engineered is with, as yet unknown, low loss materials with negative permittivity.


Optimization Of The Nanolens Consisting Of Coupled Metal Nanoparticles: An Analytical Approach, Greg Sun, Jacob B. Khurgin Apr 2011

Optimization Of The Nanolens Consisting Of Coupled Metal Nanoparticles: An Analytical Approach, Greg Sun, Jacob B. Khurgin

Physics Faculty Publications

Using a simple and intuitive analytical approach, we perform optimization of a nanolens composed of coupled metal nanoparticles capable of subwavelength focusing of light inside the narrow gap separating the particles. Specifically, we optimize the structure of two nanospheres of different sizes to achieve maximum field enhancement at an off-center position in the gap. We demonstrate that the nanolens of two or more spheres acts simultaneously as an efficient antenna with large dipole and an efficient cavity with small effective volume.