Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Measurement Of The Electric Form Factor Of The Neutron At Q² = 0.5 And 1.0 Gev²/C², Jefferson Lab E93-026 Collaboration, G. Warren, F. Wesselmann, H. Zhu, A. Klimenko, S. E. Kuhn, L. Yuan, J. Yun, B. Zihlmann, Et Al. Jan 2004

Measurement Of The Electric Form Factor Of The Neutron At Q² = 0.5 And 1.0 Gev²/C², Jefferson Lab E93-026 Collaboration, G. Warren, F. Wesselmann, H. Zhu, A. Klimenko, S. E. Kuhn, L. Yuan, J. Yun, B. Zihlmann, Et Al.

Physics Faculty Publications

The electric form factor of the neutron was determined from measurements of the d( e, e'n)p reaction for quasielastic kinematics. Polarized electrons were scattered off a polarized deuterated ammonia (15ND3) target in which the deuteron polarization was perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle detector. We find GnE =0.0526 ± 0.0033(stat) ± 0.0026(sys) and 0.0454 ± 0.0054 ± 0.0037 at Q2=0.5 and 1.0 (GeV/c)2, respectively.


Unique Electron Polarimeter Analyzing Power Comparison And Precision Spin-Based Energy Measurement, J. M. Grames, C. K. Sinclair, J. Mitchell, E. Chudakov, H. Fenker, A. Freyberger, D. W. Higinbotham, M. Poelker, M. Steigerwald, M. Tiefenback, Vipuli Dharmawardane Jan 2004

Unique Electron Polarimeter Analyzing Power Comparison And Precision Spin-Based Energy Measurement, J. M. Grames, C. K. Sinclair, J. Mitchell, E. Chudakov, H. Fenker, A. Freyberger, D. W. Higinbotham, M. Poelker, M. Steigerwald, M. Tiefenback, Vipuli Dharmawardane

Physics Faculty Publications

Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility ( Jefferson Laboratory). A Wien filter in the 100 keV beam line of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of …