Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Publications

Series

Atom-photon collisions

Articles 1 - 8 of 8

Full-Text Articles in Physics

Experimental Investigation Of Long-Lived Rydberg States In Ultracold Argon, G. Ranjit, C. I. Sukenik Mar 2013

Experimental Investigation Of Long-Lived Rydberg States In Ultracold Argon, G. Ranjit, C. I. Sukenik

Physics Faculty Publications

We report on our investigation of the formation and survival of long-lived Rydberg states in argon produced by pulsed laser excitation of ultracold metastable state argon atoms in a magneto-optical trap. The states studied have a 2P1/2 core. Low angular momentum Rydberg states with this core normally autoionize rapidly. If, however, atoms are excited in the presence of electric fields, higher angular momentum states, traditionally termed ZEKE states (ZEKE is derived from zero kinetic energy) can be formed. The lifetime of these states can be orders of magnitude greater than low angular momentum states. In this paper, we report on …


Investigation Of Loading Of Pulsed And Continuous-Wave Optical Dipole Force Traps, M. Shiddiq, E. M. Ahmed, M. D. Havey, C. I. Sukenik Apr 2008

Investigation Of Loading Of Pulsed And Continuous-Wave Optical Dipole Force Traps, M. Shiddiq, E. M. Ahmed, M. D. Havey, C. I. Sukenik

Physics Faculty Publications

We have investigated the behavior of an optical dipole force trap realized using a mode-locked Nd:YAG laser and have compared performance to a continuous-wave (cw) trap built using the same laser but running in a cw mode. The traps are used to confine ultracold 85Rb atoms which are loaded from a magneto-optical trap (MOT). In most respects, the two traps behave similarly over a wide range of laser parameters provided that the average potential well depth is the same; however, there is a notable difference in the dipole trap loading efficiency dependence on the detuning of the MOT trap laser …


Alignment Dynamics Of Slow Light Diffusion In Ultracold Atomic 85Rb, S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, D. V. Kupriyanov Nov 2005

Alignment Dynamics Of Slow Light Diffusion In Ultracold Atomic 85Rb, S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, D. V. Kupriyanov

Physics Faculty Publications

A combined experimental and theoretical investigation of time- and alignment-dependent propagation of light in an ultracold atomic gas of atomic 85Rb is reported. Coherences among the scattering amplitudes for light scattering off excited hyperfine levels produce strong variations of the light polarization in the vicinity of atomic resonance. Measurements are in excellent agreement with Monte Carlo simulations of the multiple scattering process.


Coherent Backscattering Of Light In Atomic Systems: Application To Weak Localization In An Ensemble Of Cold Alkali-Metal Atoms, D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, M. D. Havey Jan 2003

Coherent Backscattering Of Light In Atomic Systems: Application To Weak Localization In An Ensemble Of Cold Alkali-Metal Atoms, D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, M. D. Havey

Physics Faculty Publications

Development of a theoretical treatment of multiple coherent light scattering in an ultracold atomic gas is reported. Specific application is made to coherent backscattering of a weak-radiation field from realistically modeled samples of ultracold atomic 85Rb. Comprehensive Monte Carlo simulations of the spatial, spectral, and polarization dependence of the backscattering line shape are made and compared with available experimental results.


Role Of Spontaneous Emission In Ultracold Two-Color Optical Collisions, C. I. Sukenik, T. Walker Jan 1999

Role Of Spontaneous Emission In Ultracold Two-Color Optical Collisions, C. I. Sukenik, T. Walker

Physics Faculty Publications

We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. By varying the detuning of the lasers, we have clearly identified the effect of spontaneous emission on the collision process.


Low Saturation Intensities In Two-Photon Ultracold Collisions, C. I. Sukenik, D. Hoffman, S. Bali, T. Walker Jul 1998

Low Saturation Intensities In Two-Photon Ultracold Collisions, C. I. Sukenik, D. Hoffman, S. Bali, T. Walker

Physics Faculty Publications

We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding.


Core Scattering Of Stark Wave Packets, M. L. Naudeau, C. I. Sukenik, P. H. Bucksbaum Jul 1997

Core Scattering Of Stark Wave Packets, M. L. Naudeau, C. I. Sukenik, P. H. Bucksbaum

Physics Faculty Publications

We investigate the wave packet dynamics of electrons bound in the nonseparable potential of cesium in a static electric field using time-domain Ramsey interferometry. Specially shaped wave packets with low radial dispersion enable us to view the interaction between the wave packet and the atomic core. Experiments in cesium, together with quantum defect calculations of cesium and hydrogen, demonstrate changes in the motion and shape of these wave packets due to core scattering.


Spectroscopy Of Atoms Confined To The Single Node Of A Standing Wave In A Parallel-Plate Cavity, V. Sandoghar, C. I. Sukenik, S. Haroche, E. A. Hinds Mar 1996

Spectroscopy Of Atoms Confined To The Single Node Of A Standing Wave In A Parallel-Plate Cavity, V. Sandoghar, C. I. Sukenik, S. Haroche, E. A. Hinds

Physics Faculty Publications

We have performed spectroscopy on sodium atoms that are optically channeled in the single node of a laser standing wave set up across a parallel-plate cavity. Using this technique we have extended our previous measurement of the Lennard-Jones van der Waals energy-level shift [Sandoghdar et al., Phys. Rev. Lett. 68, 3432 (1992)] down to a cavity width of ~500 nm. We discuss the applications of this technique to the precise measurement of atom-surface distances.