Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Similar Ultrafast Dynamics Of Several Dissimilar Dirac And Weyl Semimetals, Christopher P. Weber, Bryan S. Berggren, Madison G. Masten, Thomas C. Ogloza, Skylar Deckoff-Jones, Julien Madéo, Michael K. L. Man, Keshav M. Dani, Lingxiao Zhao, Genfu Chen, Jinyu Liu, Zhiqiang Mao, Leslie M. Schoop, Bettina V. Lotsch, Stuart S. P. Parkin, Mazhar Ali Dec 2017

Similar Ultrafast Dynamics Of Several Dissimilar Dirac And Weyl Semimetals, Christopher P. Weber, Bryan S. Berggren, Madison G. Masten, Thomas C. Ogloza, Skylar Deckoff-Jones, Julien Madéo, Michael K. L. Man, Keshav M. Dani, Lingxiao Zhao, Genfu Chen, Jinyu Liu, Zhiqiang Mao, Leslie M. Schoop, Bettina V. Lotsch, Stuart S. P. Parkin, Mazhar Ali

Physics

Recent years have seen the rapid discovery of solids whose low-energy electrons have a massless, linear dispersion, such as Weyl, line-node, and Dirac semimetals. The remarkable optical properties predicted in these materials show their versatile potential for optoelectronic uses. However, little is known of their response in the picoseconds after absorbing a photon. Here, we measure the ultrafast dynamics of four materials that share non-trivial band structure topology but that differ chemically, structurally, and in their low-energy band structures: ZrSiS, which hosts a Dirac line node and Dirac points; TaAs and NbP, which are Weyl semimetals; and Sr1–y …


L-Edge Spectroscopy Of Dilute, Radiation-Sensitive Systems Using A Transition-Edge-Sensor Array, Charles J. Titus, Michael L. Baker, Sang Jun Lee, Hsiao-Mei Cho, William B. Doriese, Joseph W. Fowler, Kelly Gaffney, Johnathon D. Gard, Gene C. Hilton, Chris Kenney, Jason Knight, Dale Li, Ronald Marks, Michael P. Minitti, Kelsey M. Morgan, Galen C. O'Neil, Carl D. Reintsema, Daniel R. Schmidt, Dimosthenis Sokaras, Daniel S. Swetz, Joel N. Ullom, Tsu-Chien Weng, Christopher Williams, Betty A. Young, Kent D. Irwin, Edward I. Solomon, Dennis Nordlund Dec 2017

L-Edge Spectroscopy Of Dilute, Radiation-Sensitive Systems Using A Transition-Edge-Sensor Array, Charles J. Titus, Michael L. Baker, Sang Jun Lee, Hsiao-Mei Cho, William B. Doriese, Joseph W. Fowler, Kelly Gaffney, Johnathon D. Gard, Gene C. Hilton, Chris Kenney, Jason Knight, Dale Li, Ronald Marks, Michael P. Minitti, Kelsey M. Morgan, Galen C. O'Neil, Carl D. Reintsema, Daniel R. Schmidt, Dimosthenis Sokaras, Daniel S. Swetz, Joel N. Ullom, Tsu-Chien Weng, Christopher Williams, Betty A. Young, Kent D. Irwin, Edward I. Solomon, Dennis Nordlund

Physics

We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize …


H0licow Vii: Cosmic Evolution Of The Correlation Between Black Hole Mass And Host Galaxy Luminosity, Xuheng Ding, Tommaso Treu, Sherry H. Suyu, Kenneth C. Wong, Takahiro Morishita, Daesong Park, Dominique Sluse, Matthew W. Auger, Adriano Agnello, Vardha Nicola Bennert, Thomas E. Collett Nov 2017

H0licow Vii: Cosmic Evolution Of The Correlation Between Black Hole Mass And Host Galaxy Luminosity, Xuheng Ding, Tommaso Treu, Sherry H. Suyu, Kenneth C. Wong, Takahiro Morishita, Daesong Park, Dominique Sluse, Matthew W. Auger, Adriano Agnello, Vardha Nicola Bennert, Thomas E. Collett

Physics

Strongly lensed active galactic nuclei (AGN) provide a unique opportunity to make progress in the study of the evolution of the correlation between the mass of supermassive black holes (MBH⁠⁠) and their host galaxy luminosity (Lhost). We demonstrate the power of lensing by analysing two systems for which state-of-the-art lens modelling techniques have been applied to deep Hubble Space Telescope imaging data. We use (i) the reconstructed images to infer the total and bulge luminosity of the host and (ii) published broad-line spectroscopy to estimate MBH using the so-called virial method. We then enlarge …


Ambipolar Spin Diffusion In P-Type Gaas: A Case Where Spin Diffuses More Than Charge, F. Cadiz, V. Notot, J. Filipovic, Christopher P. Weber, L. Martinelli, A.C. H. Rowe, S. Arscott Sep 2017

Ambipolar Spin Diffusion In P-Type Gaas: A Case Where Spin Diffuses More Than Charge, F. Cadiz, V. Notot, J. Filipovic, Christopher P. Weber, L. Martinelli, A.C. H. Rowe, S. Arscott

Physics

We investigate the diffusion of charge and spin at 15 K in p-type GaAs, combining transient-grating and energy-resolved microluminescence measurements to cover a broad range of photoelectron density. At very low optical power, in a unipolar nondegenerate regime, charge and spin diffuse at the same rate, implying that the spin-drag effects are negligible. Upon increasing the photoelectron concentration up to about 1016 cm–3, the charge diffusion constant decreases because of ambipolar electrostatic interactions with the slower-diffusing holes while the spin diffusion constant is reduced only weakly by the ambipolar interaction. A further increase in the excitation power causes increases in …


Discovery And Follow-Up Observations Of The Young Type Ia Supernova 2016coj, Weikang Zheng, Alexei V. Filippenko, Jon Mauerhan, Melissa L. Graham, Vardha Nicola Bennert, Xiaofeng Wang May 2017

Discovery And Follow-Up Observations Of The Young Type Ia Supernova 2016coj, Weikang Zheng, Alexei V. Filippenko, Jon Mauerhan, Melissa L. Graham, Vardha Nicola Bennert, Xiaofeng Wang

Physics

The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is …


Development, Implementation, And Validation Of A California Coastal Ocean Modeling, Data Assimilation, And Forecasting System, Yi Chao, John D. Farrara, Hongchun Zhang, Kevin Armenta, Luca Centurioni, Francisco Chavez, James B. Girton, Dan Rudnick, Ryan K. Walter Apr 2017

Development, Implementation, And Validation Of A California Coastal Ocean Modeling, Data Assimilation, And Forecasting System, Yi Chao, John D. Farrara, Hongchun Zhang, Kevin Armenta, Luca Centurioni, Francisco Chavez, James B. Girton, Dan Rudnick, Ryan K. Walter

Physics

A three-dimensional, near real-time data-assimilative modeling system for the California coastal ocean is presented. The system consists of a Regional Ocean Modeling System (ROMS) forced by the North American Mesoscale Forecast System (NAM). The ocean model has a horizontal resolution of approximately three kilometers and utilizes a multi-scale three-dimensional variational (3DVAR) data assimilation methodology. The system is run in near real-time to produce a nowcast every six hours and a 72-hour forecast every day. The performance of this nowcast system is presented using results from a six-year period of 2009–2015.

The ROMS results are first compared with the assimilated data …


Extending The Calibration Of C Iv-Based Single-Epoch Black Hole Mass Estimators For Active Galactic Nuclei, Daeseong Park, Aaron J. Barth, Jong-Hak Woo, Matthew A. Malkan, Tommaso Treu, Vardha Nicola Bennert, Roberto J. Assef, Anna Pancoast Apr 2017

Extending The Calibration Of C Iv-Based Single-Epoch Black Hole Mass Estimators For Active Galactic Nuclei, Daeseong Park, Aaron J. Barth, Jong-Hak Woo, Matthew A. Malkan, Tommaso Treu, Vardha Nicola Bennert, Roberto J. Assef, Anna Pancoast

Physics

We provide an updated calibration of C iv broad emission line–based single-epoch (SE) black hole (BH) mass estimators for active galactic nuclei (AGNs) using new data for six reverberation-mapped AGNs at redshift with BH masses (bolometric luminosities) in the range ( erg s−1). New rest-frame UV-to-optical spectra covering 1150–5700 Å for the six AGNs were obtained with the Hubble Space Telescope (HST). Multicomponent spectral decompositions of the HST spectra were used to measure SE emission-line widths for the C iv, Mg ii, and Hβ lines, as well as continuum luminosities in the spectral region around each line. …


Projected Sensitivity Of The Supercdms Snolab Experiment, R. Agnese, A. J. Anderson, T. Aramaki, I. J. Arnquist, W. Baker, D. Barker, R. Basu Thakur, D. A. Bauer, A. Borgland, M. A. Bowles, P. L. Brink, R. Bunker, Blas Cabrera, D. O. Caldwell, R. Calkins, C. Cartaro, D. G. Cerdeño, H. Chagani, Y. Chen, J. Cooley, B. Cornell, P. Cushman, M. Daal, P.C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, M. Fritts, G. Gerbier, M. Ghaith, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, T. Hofer, D. Holmgren, Z. Hong, E. Hoppe, L. Hsu, M. E. Huber, V. Iyer, D. Jardin, A. Jastram, M. H. Kelsey, A. Kennedy, A. Kubik, N. A. Kurinsky, A. Leder, B. Loer, E. Lopez Asamar, P. Lukens, R. Mahapatra, V. Mandic, N. Mast, N. Mirabolfathi, R. A. Moffatt, J. D. Morales Mendoza, J. L. Orrell, S. M. Oser, K. Page, W. A. Page, R. Partridge, M. Pepin, A. Phipps, S. Poudel, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, A. Roberts, A. E. Robinson, H. E. Rogers, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, B. Serfass, D. Speller, M. Stein, J. Street, H. A. Tanaka, D. Toback, R. Underwood, A. N. Villano, B. Von Krosigk, B. Welliver, J. S. Wilson, D. H. Wright, S. Yellin, J. J. Yen, Betty A. Young, X. Zhang, X. Zhao Apr 2017

Projected Sensitivity Of The Supercdms Snolab Experiment, R. Agnese, A. J. Anderson, T. Aramaki, I. J. Arnquist, W. Baker, D. Barker, R. Basu Thakur, D. A. Bauer, A. Borgland, M. A. Bowles, P. L. Brink, R. Bunker, Blas Cabrera, D. O. Caldwell, R. Calkins, C. Cartaro, D. G. Cerdeño, H. Chagani, Y. Chen, J. Cooley, B. Cornell, P. Cushman, M. Daal, P.C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, M. Fritts, G. Gerbier, M. Ghaith, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, T. Hofer, D. Holmgren, Z. Hong, E. Hoppe, L. Hsu, M. E. Huber, V. Iyer, D. Jardin, A. Jastram, M. H. Kelsey, A. Kennedy, A. Kubik, N. A. Kurinsky, A. Leder, B. Loer, E. Lopez Asamar, P. Lukens, R. Mahapatra, V. Mandic, N. Mast, N. Mirabolfathi, R. A. Moffatt, J. D. Morales Mendoza, J. L. Orrell, S. M. Oser, K. Page, W. A. Page, R. Partridge, M. Pepin, A. Phipps, S. Poudel, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, A. Roberts, A. E. Robinson, H. E. Rogers, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, B. Serfass, D. Speller, M. Stein, J. Street, H. A. Tanaka, D. Toback, R. Underwood, A. N. Villano, B. Von Krosigk, B. Welliver, J. S. Wilson, D. H. Wright, S. Yellin, J. J. Yen, Betty A. Young, X. Zhang, X. Zhao

Physics

SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c2) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10−43 cm2 for a dark matter particle mass of 1 GeV/c2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark …


Room-Temperature Self-Powered Energy Photodetector Based On Optically Induced Seebeck Effect In Cd3As2, Niloufar Yavarishad, Tahereh Hosseini, Elaheh Kheirandish, Christopher P. Weber, Nikolai Kouklin Apr 2017

Room-Temperature Self-Powered Energy Photodetector Based On Optically Induced Seebeck Effect In Cd3As2, Niloufar Yavarishad, Tahereh Hosseini, Elaheh Kheirandish, Christopher P. Weber, Nikolai Kouklin

Physics

We demonstrate an intrinsically fast Seebeck-type metal–semimetal–metal infrared photodetector based on Cd3As2 crystals. The Seebeck voltage is induced under off-center illumination, leading to asymmetric temperature gradients and a net current flow. The room-temperature responsivity of the sensor is 0.27 mA/W. The photocurrent signal is readily registered at a modulation frequency of 6 kHz, and the intrinsic bandwidth of the sensor is predicted to approach the terahertz range. The photocurrent depends on the optical power and modulation frequency. Our study demonstrates that crystallineCd3As2 is a promising material for high-bandwidth and spectrally broad photosensing, imaging, and …


Space Telescope And Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign And Emission-Line Analysis For Ngc 5548, L. Pei, M. M. Fausnaugh, A. J. Barth, B. M. Peterson, Vardha Nicola Bennert, Y. Zu Mar 2017

Space Telescope And Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign And Emission-Line Analysis For Ngc 5548, L. Pei, M. M. Fausnaugh, A. J. Barth, B. M. Peterson, Vardha Nicola Bennert, Y. Zu

Physics

We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He ii λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by and , respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the …


Fading Agn Candidates: Agn Histories And Outflow Signatures, William C. Keel, Chris J. Lintott, W. Peter Maksym, Vardha N. Bennert, S. Drew Chojnowski, Alexei Moiseev, Aleksandrina Smirnova, Kevin Schawinski, Lia F. Sartori, C. Megan Urry, Anna Pancoast, Mischa Schirmer, Bryan Scott, Charles Grant Showley, Kelsi Flatland Feb 2017

Fading Agn Candidates: Agn Histories And Outflow Signatures, William C. Keel, Chris J. Lintott, W. Peter Maksym, Vardha N. Bennert, S. Drew Chojnowski, Alexei Moiseev, Aleksandrina Smirnova, Kevin Schawinski, Lia F. Sartori, C. Megan Urry, Anna Pancoast, Mischa Schirmer, Bryan Scott, Charles Grant Showley, Kelsi Flatland

Physics

We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Qion derived from photoionization balance in the brightest pixels in Hα at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful …


Local Diurnal Wind‐Driven Variability And Upwelling In A Small Coastal Embayment, Ryan K. Walter, Emma C. Reid, Kristen A. Davis, Kevin Armenta, Kevin Merhoff, Nicholas J. Nidzieko Jan 2017

Local Diurnal Wind‐Driven Variability And Upwelling In A Small Coastal Embayment, Ryan K. Walter, Emma C. Reid, Kristen A. Davis, Kevin Armenta, Kevin Merhoff, Nicholas J. Nidzieko

Physics

The oceanic response to high‐frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first‐mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the …