Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

MSU Graduate Theses

Theses/Dissertations

XRD

Articles 1 - 2 of 2

Full-Text Articles in Physics

Investigating The Structural Properties Of Licoo2 Through Annealing In A Reducing Atmosphere And Characterization Using Raman Spectroscopy And X-Ray Diffraction, Mathew A. Boeser Jan 2023

Investigating The Structural Properties Of Licoo2 Through Annealing In A Reducing Atmosphere And Characterization Using Raman Spectroscopy And X-Ray Diffraction, Mathew A. Boeser

MSU Graduate Theses

The electrochemical performance of lithium cobalt oxide (LiCoO2) cathode materials in lithium-ion batteries is strongly influenced by their structural and chemical characteristics. Annealing in a reducing atmosphere is able to modify the crystal structure of LiCoO2 by inducing oxygen vacancies, ideally enhancing its electrochemical performance. This master's thesis presents an investigation into the effects of low to mid-range annealing temperatures in a reducing atmosphere on bulk LiCoO2 powder, utilizing Raman spectroscopy and X-ray Diffraction (XRD).


Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar May 2020

Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar

MSU Graduate Theses

The exchange bias (EB) effect, especially in nanomaterials, is highly promising for use in antiferromagnet-based spintronics applications. NiO is a well known antiferromagnetic material with a high Néel temperature (525K) and can exhibit ferromagnetism/ ferrimagnetism by adding other magnetic transition elements. Our previous work has shown that the antiferromagnetic characteristics of conventional NiO insulating nanostructured material can be altered to have substantial ferrimagnetic characteristics by doping NiO with Mn or Co. Pulsed laser deposition (PLD) was used to grow heterostructures comprised of a nanostructured thin NiO film deposited on the surface of a MgO (100) and Al2O3 …