Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Crystallization Engineering As A Route To Epitaxial Strain Control, Andrew R. Akbashev, Aleksandr V. Plokhikh, Dmitri Barbash, Samuel Lofland, Jonathan E. Spanier Oct 2015

Crystallization Engineering As A Route To Epitaxial Strain Control, Andrew R. Akbashev, Aleksandr V. Plokhikh, Dmitri Barbash, Samuel Lofland, Jonathan E. Spanier

Faculty Scholarship for the College of Science & Mathematics

The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001)SrTiO3 and (001)LaAlO3substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001)BiFeO3 phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001)SrTiO3 results in a coherently strained film, the same films obtained on (001)LaAlO3 …


Student Understanding Of The Boltzmann Factor, Trevor I. Smith, Donald B. Mountcastle, John R. Thompson Sep 2015

Student Understanding Of The Boltzmann Factor, Trevor I. Smith, Donald B. Mountcastle, John R. Thompson

Faculty Scholarship for the College of Science & Mathematics

We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us …


Identifying Student Difficulties With Entropy, Heat Engines, And The Carnot Cycle, Trevor I. Smith, Warren M. Christensen, Donald B. Mountcastle, John R. Thompson Sep 2015

Identifying Student Difficulties With Entropy, Heat Engines, And The Carnot Cycle, Trevor I. Smith, Warren M. Christensen, Donald B. Mountcastle, John R. Thompson

Faculty Scholarship for the College of Science & Mathematics

We report on several specific student difficulties regarding the second law of thermodynamics in the context of heat engines within upper-division undergraduate thermal physics courses. Data come from ungraded written surveys, graded homework assignments, and videotaped classroom observations of tutorial activities. Written data show that students in these courses do not clearly articulate the connection between the Carnot cycle and the second law after lecture instruction. This result is consistent both within and across student populations. Observation data provide evidence for myriad difficulties related to entropy and heat engines, including students’ struggles in reasoning about situations that are physically impossible …


Simultaneous Stress And Field Control Of Sustainable Switching Of Ferroelectric Phases, P. Finkel, M. Staruch, A. Amin, M. Ahart, Samuel E. Lofland Sep 2015

Simultaneous Stress And Field Control Of Sustainable Switching Of Ferroelectric Phases, P. Finkel, M. Staruch, A. Amin, M. Ahart, Samuel E. Lofland

Faculty Scholarship for the College of Science & Mathematics

In ferroelectrics, manifestation of a strong electromechanical coupling is attributed to both engineered domain morphology and phase transformations. However, realization of large sustainable and reversible strains and polarization rotation has been limited by fatigue, nonlinearity and hysteresis losses. Here, we demonstrate that large strain and polarization rotation can be generated for over 40 × 106 cycles with little fatigue by realization of a reversible ferroelectric-ferroelectric phase transition in [011] cut Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor ferroelectric single crystal. Direct tuning of this effect through combination of stress and applied electric field, confirmed both macroscopically and microscopically with x-ray and Raman scattering, reveals …


Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Aug 2015

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Faculty Scholarship for the College of Science & Mathematics

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was …