Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Energy Scaling Of Nanosecond Gain-Switched Cr2+:Znse Lasers, Vladimir V. Fedorov, Igor S. Moskalev, M. S. Mirov, S. B. Mirov, Torrey J. Wagner, Matthew J. Bohn, Patrick A. Berry, K. L. Schepler Feb 2011

Energy Scaling Of Nanosecond Gain-Switched Cr2+:Znse Lasers, Vladimir V. Fedorov, Igor S. Moskalev, M. S. Mirov, S. B. Mirov, Torrey J. Wagner, Matthew J. Bohn, Patrick A. Berry, K. L. Schepler

Faculty Publications

In this paper, we report record nanosecond output energies of gain-switched CrZnSe lasers pumped by Q-switched CrTmHoYAG 100 ns at 2.096 microns and Raman shifted NdYAG lasers 7 ns at 1.906 microns. In these experiments we used Brewster cut CrZnSe gain elements with a chromium concentration of 8x1018cm-3. Under CrTmHoYAG pumping, the first CrZnSe laser demonstrated 3.1 mJ of output energy, 52 slope efficiency and 110 nm linewidth centered at a wavelength of 2.47 microns. Maximum output energy of the second CrZnSe laser reached 10.1 mJ under H2 Raman shifted NdYAG laser pumping. The slope …


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar Jan 2011

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar

Faculty Publications

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


Raman Spectroscopic Study Of The Formation Of T-Mosi2 From Mo/Si Multilayers, Ming Cai, David D. Allred, A. Reyes-Mena Jul 1994

Raman Spectroscopic Study Of The Formation Of T-Mosi2 From Mo/Si Multilayers, Ming Cai, David D. Allred, A. Reyes-Mena

Faculty Publications

We have used Raman spectroscopy, large- and small-angle x-ray diffraction spectroscopy of sputter-deposited, vacuum-annealed, soft x-ray Mo/Si thin-film multilayers to study the physics of silicide formation. Two sets of multilayer samples with d-spacing 8.4 and 2.0 nm have been studied. Annealing at temperatures above 800 °C causes a gradual formation of amorphous MoSi2 interfaces between the Si and Mo layers. The transition from amorphous to crystalline MoSi2 is abrupt. The experimental results indicate that nucleation is the dominant process for the early stage and crystallization is the dominant process after nucleation is well advanced. In the thicker multilayer, a portion …


Use Of Raman Spectroscopy In Characterizing Soft X-Ray Multilayers: Tools In Understanding Structure And Interfaces, Ming Cai, Qi Wang, David D. Allred, Larry V. Knight, Dorian M. Hatch, A. Reyes-Mena, Guizhong Zhang Oct 1992

Use Of Raman Spectroscopy In Characterizing Soft X-Ray Multilayers: Tools In Understanding Structure And Interfaces, Ming Cai, Qi Wang, David D. Allred, Larry V. Knight, Dorian M. Hatch, A. Reyes-Mena, Guizhong Zhang

Faculty Publications

Our group is studying the structure and interfaces of soft x-ray multilayers by various techniques including x-ray diffraction and Raman spectroscopy. Raman spectroscopy is particularly useful since it is sensitive to the identity of individual bonds and thus can potentially characterize the abruptness of interfaces in multilayers. Blocking interfacial mixing is very important in achieving and maintaining high reflectivity. We report our studies of the as-deposited and postannealed structure of Mo/Si and W/C multilayers. The Mo/Si system is probably the most widely studied multilayer currently because of its potential applications for soft x-ray projection lithography for the range of 13 …


Characterization Of Metal/Carbon Multilayers By Raman Spectroscopy, David D. Allred, Qi Wang, Jesus González-Hernández Jan 1990

Characterization Of Metal/Carbon Multilayers By Raman Spectroscopy, David D. Allred, Qi Wang, Jesus González-Hernández

Faculty Publications

Laser Raman spectroscopy has been found to be useful for characterizing amorphous semiconductor multilayers, especially the interfaces of multilayers. Recently, we have extended this technique to the characterization of magnetron sputtered multilayers commonly used as reflectors in soft x-ray optics. Unlike the multilayers previously studied which contained only semiconductors and dielectrics, these are generally semiconductor/metal multilayers. We report here on the Raman characterization of the most common class of multilayers used in soft x-ray optics, those that contain a high density metal like tungsten interspersed with layers of carbon. In all of the metal/carbon multilayers the dominate feature in the …