Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Electrical and Computer Engineering

Band gap

Articles 1 - 2 of 2

Full-Text Articles in Physics

Degenerate Parallel Conducting Layer And Conductivity Type Conversion Observed From P-Ge1 - YSnY (Y = 0.06%) Grown On N-Si Substrate, Mee-Yi Ryu, Yung Kee Yeo, M. Ahoujja, Thomas R. Harris, Richard T. Beeler, John Kouvetakis Sep 2012

Degenerate Parallel Conducting Layer And Conductivity Type Conversion Observed From P-Ge1 - YSnY (Y = 0.06%) Grown On N-Si Substrate, Mee-Yi Ryu, Yung Kee Yeo, M. Ahoujja, Thomas R. Harris, Richard T. Beeler, John Kouvetakis

Faculty Publications

Electrical properties of p-Ge1−ySny (y = 0.06%) grown on n-Si substrate were investigated through temperature-dependent Hall-effect measurements. It was found that there exists a degenerate parallel conducting layer in Ge1−ySny/Si and a second, deeper acceptor in addition to a shallow acceptor. This parallel conducting layer dominates the electrical properties of the Ge1−ySny layer below 50 K and also significantly affects those properties at higher temperatures. Additionally, a conductivity type conversion from p to n was observed around 370 K for this sample. A two-layer conducting model was used …


Effect Of Ga Content On Defect States In Cuin1-XGaXSe2 Photovoltaic Devices, Jennifer T. Heath, J. David Cohen, William N. Shafarman, Dongxiang Liao, Angus Rockett Jan 2002

Effect Of Ga Content On Defect States In Cuin1-XGaXSe2 Photovoltaic Devices, Jennifer T. Heath, J. David Cohen, William N. Shafarman, Dongxiang Liao, Angus Rockett

Faculty Publications

Defects in the band gap of CuIn1-xGaxSe2 have been characterized using transient photocapacitance spectroscopy. The measured spectra clearly show response from a band of defects centered around 0.8 eV from the valence band edge as well as an exponential distribution of band tail states. Despite Ga contents ranging from Ga/(In+Ga)=0.0 to 0.8, the defect bandwidth and its position relative to the valence band remain constant. This defect band may act as an important recombination center, contributing to the decrease in device efficiency with increasing Ga content.