Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Department of Physics and Astronomy Faculty Scholarship and Creative Works

Series

2017

Methods: data analysis

Articles 1 - 2 of 2

Full-Text Articles in Physics

Search For Post-Merger Gravitational Waves From The Remnant Of The Binary Neutron Star Merger Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, Marc Favata, Shaon Ghosh, Rodica Martin Dec 2017

Search For Post-Merger Gravitational Waves From The Remnant Of The Binary Neutron Star Merger Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, Marc Favata, Shaon Ghosh, Rodica Martin

Department of Physics and Astronomy Faculty Scholarship and Creative Works

The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant …


Estimating The Contribution Of Dynamical Ejecta In The Kilonova Associated With Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, Marc Favata, Shaon Ghosh, Rodica Martin Dec 2017

Estimating The Contribution Of Dynamical Ejecta In The Kilonova Associated With Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, Marc Favata, Shaon Ghosh, Rodica Martin

Department of Physics and Astronomy Faculty Scholarship and Creative Works

The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting …