Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Department of Physics and Astronomy Faculty Scholarship and Creative Works

Series

2017

Binaries: general

Articles 1 - 2 of 2

Full-Text Articles in Physics

Gw170608: Observation Of A 19 Solar-Mass Binary Black Hole Coalescence, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, Marc Favata, Shaon Ghosh, Rodica Martin Dec 2017

Gw170608: Observation Of A 19 Solar-Mass Binary Black Hole Coalescence, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, Marc Favata, Shaon Ghosh, Rodica Martin

Department of Physics and Astronomy Faculty Scholarship and Creative Works

On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass blackholes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with anetwork signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with componentmasses of 12+7-2M⊙7+2-2 (90% credible intervals). These lie in the range of measured black hole masses inlow-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagneticobservations. The source's luminosity distance is 340+140-140corresponding to redshift -0.07+0.03003. We verify thatthe signal waveform is consistent with the predictions of general relativity.


On The Progenitor Of Binary Neutron Star Merger Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, Marc Favata, Shaon Ghosh, Rodica Martin Dec 2017

On The Progenitor Of Binary Neutron Star Merger Gw170817, B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, Marc Favata, Shaon Ghosh, Rodica Martin

Department of Physics and Astronomy Faculty Scholarship and Creative Works

On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the …