Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Search For Gravitational Waves From Compact Binary Coalescence In Ligo And Virgo Data From S5 And Vsr1, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, Shaon Ghosh, Rodica Martin Nov 2010

Search For Gravitational Waves From Compact Binary Coalescence In Ligo And Virgo Data From S5 And Vsr1, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, Shaon Ghosh, Rodica Martin

Department of Physics and Astronomy Faculty Scholarship and Creative Works

We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (LIGO) and VSR1 (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 M. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10−3 yr−1L−1 10 , 2.2×10−3 yr−1L−1 …


First Search For Gravitational Waves From The Youngest Known Neutron Star, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, C. Adams, R. Adhikari, P. Ajith, B. Allen, G. Allen, Shaon Ghosh Oct 2010

First Search For Gravitational Waves From The Youngest Known Neutron Star, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, C. Adams, R. Adhikari, P. Ajith, B. Allen, G. Allen, Shaon Ghosh

Department of Physics and Astronomy Faculty Scholarship and Creative Works

We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7-1.2) × 10 -24 on the intrinsic gravitational-wave strain, (0.4-4) …


Predictions For The Rates Of Compact Binary Coalescences Observable By Ground-Based Gravitational-Wave Detectors, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, B. Allen, G. Allen, E. Amador Ceron, R. S. Amin, S. B. Anderson, W. G. Anderson, F. Antonucci, S. Aoudia, M. A. Arain, M. Araya, M. Aronsson, K. G. Arun, Y. Aso, S. Aston, P. Astone, D. E. Atkinson, P. Aufmuth, C. Aulbert, S. Babak, P. Baker, G. Ballardin, Shaon Ghosh Sep 2010

Predictions For The Rates Of Compact Binary Coalescences Observable By Ground-Based Gravitational-Wave Detectors, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, B. Allen, G. Allen, E. Amador Ceron, R. S. Amin, S. B. Anderson, W. G. Anderson, F. Antonucci, S. Aoudia, M. A. Arain, M. Araya, M. Aronsson, K. G. Arun, Y. Aso, S. Aston, P. Astone, D. E. Atkinson, P. Aufmuth, C. Aulbert, S. Babak, P. Baker, G. Ballardin, Shaon Ghosh

Department of Physics and Astronomy Faculty Scholarship and Creative Works

We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. Themost confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr-1 per MilkyWay Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 …


The Gravitational-Wave Memory Effect, Marc Favata Apr 2010

The Gravitational-Wave Memory Effect, Marc Favata

Department of Physics and Astronomy Faculty Scholarship and Creative Works

The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to …


Adaptive Control Of Modal Properties Of Optical Beams Using Photothermal Effects, Muzammil A. Arain, William Z. Korth, Luke F. Williams, Rodica Martin, Guido Mueller, D. B. Tanner, David H. Reitze Feb 2010

Adaptive Control Of Modal Properties Of Optical Beams Using Photothermal Effects, Muzammil A. Arain, William Z. Korth, Luke F. Williams, Rodica Martin, Guido Mueller, D. B. Tanner, David H. Reitze

Department of Physics and Astronomy Faculty Scholarship and Creative Works

We present an experimental demonstration of adaptive control of modal properties of optical beams. The control is achieved via heat-induced photothermal actuation of transmissive optical elements. We apply the heat using four electrical heaters in thermal contact with the element. The system is capable of controlling both symmetrical and astigmatic aberrations providing a powerful means for in situ correction and control of thermal aberrations in high power laser systems. We demonstrate a tunable lens with a focusing power varying from minus infinity to -10 m along two axes using SF57 optical glass. Applications of the proposed system include laser material …


Search For Gravitational-Wave Inspiral Signals Associated With Short Gamma-Ray Bursts During Ligo's Fifth And Virgo's First Science Run, J. Abadie, B. P. Abbott, R. Abbott, T. Accadia, F. Acernese, R. Adhikari, P. Ajith, B. Allen, G. Allen, Shaon Ghosh Jan 2010

Search For Gravitational-Wave Inspiral Signals Associated With Short Gamma-Ray Bursts During Ligo's Fifth And Virgo's First Science Run, J. Abadie, B. P. Abbott, R. Abbott, T. Accadia, F. Acernese, R. Adhikari, P. Ajith, B. Allen, G. Allen, Shaon Ghosh

Department of Physics and Astronomy Faculty Scholarship and Creative Works

Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ - 5, + 1)s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no …


Search For Gravitational-Wave Bursts Associated With Gamma-Ray Bursts Using Data From Ligo Science Run 5 And Virgo Science Run 1, B. P. Abbott, R. Abbott, F. Acernese, R. Adhikari, P. Ajith, B. Allen, G. Allen, M. Alshourbagy, R. S. Amin, S. B. Anderson, Rodica Martin Jan 2010

Search For Gravitational-Wave Bursts Associated With Gamma-Ray Bursts Using Data From Ligo Science Run 5 And Virgo Science Run 1, B. P. Abbott, R. Abbott, F. Acernese, R. Adhikari, P. Ajith, B. Allen, G. Allen, M. Alshourbagy, R. S. Amin, S. B. Anderson, Rodica Martin

Department of Physics and Astronomy Faculty Scholarship and Creative Works

We present the results of a search for gravitational-wave bursts (GWBs) associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for GWB signals associated with this sample of GRBs. …


Searches For Gravitational Waves From Known Pulsars With Science Run 5 Ligo Data, B. P. Abbott, R. Abbott, F. Acernese, R. Adhikari, P. Ajith, B. Allen, G. Allen, M. Alshourbagy, R. S. Amin, Rodica Martin Jan 2010

Searches For Gravitational Waves From Known Pulsars With Science Run 5 Ligo Data, B. P. Abbott, R. Abbott, F. Acernese, R. Adhikari, P. Ajith, B. Allen, G. Allen, M. Alshourbagy, R. S. Amin, Rodica Martin

Department of Physics and Astronomy Faculty Scholarship and Creative Works

We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present …