Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

All HMC Faculty Publications and Research

Condensed Matter Physics

Relaxation time

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Short Terahertz Pulses From Semiconductor Surfaces: The Importance Of Bulk Difference‐Frequency Mixing, Peter N. Saeta, Benjamin I. Greene, Shun Lien Chuang Dec 1993

Short Terahertz Pulses From Semiconductor Surfaces: The Importance Of Bulk Difference‐Frequency Mixing, Peter N. Saeta, Benjamin I. Greene, Shun Lien Chuang

All HMC Faculty Publications and Research

The crystallographic orientation dependence of the far‐infrared (FIR) light generated at the (001) surface of a zincblende semiconductor is shown to derive principally from bulk difference‐frequency mixing. A strong modulation is observed for 1‐GW/cm2 pulses on InP, which demonstrates that the radiated FIR wave produced by bulk optical rectification is comparable to that generated by the transport of photoinjected carriers. Using the bulk rectification light as a clock, we show that more than 95% of the light produced from an InP (111) crystal by 100‐fs, 100‐μJ pulses is generated in a time shorter than the excitation pulse.


Intervalley Scattering In Gaas And Inp Probed By Pulsed Far‐Infrared Transmission Spectroscopy, Peter N. Saeta, John F. Federici, Benjamin I. Greene, Douglas R. Dykaar Mar 1992

Intervalley Scattering In Gaas And Inp Probed By Pulsed Far‐Infrared Transmission Spectroscopy, Peter N. Saeta, John F. Federici, Benjamin I. Greene, Douglas R. Dykaar

All HMC Faculty Publications and Research

The dynamics of photoexcited electrons in GaAs and InP were studied using the transmission of 200‐fs pulses of far‐infrared radiation in the spectral range 15–100 cm−1. Kinetic traces of the infrared transmission as a function of delay between optical excitation and infrared probe show a probe‐limited decrease in transmission followed by a more gradual (0.7–2 ps) drop to a steady value, consistent with the slow return of electrons from high‐mass satellite valleys. Infrared transmission spectra, analyzed in the context of a Drude model, reveal density‐dependent electron mobilities 3–4 times below equilibrium n‐doped values. Electron‐hole collisions likely account …